1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
12

Answer the following equation: 1/2(x + 20) = 17/4x + 4 (6 - x)

Mathematics
1 answer:
zzz [600]3 years ago
8 0
So use distributive property
which is
a(b+c)=ab+ac so
1/2(x+20)=1/2x+10

and the other
4(6-x)=24-4x

so now we have
1/2x+10=17/4x+24-4x
convert -4x to -16/4x and add to the 17/4x
1/2x+10=1/4x+24
subtract 24 from boths ides
1/2x-14=1/4x
multily both sides by 4
2x-56=x
subtract x from both sides
x-56=0
add 56 to both sides
x=56
You might be interested in
A physical education department wanted a single test of upper body strength that was easy to administer. Dips on the parallel ba
Gennadij [26K]

Answer:

24.23 ; 13.47 ; 0.782 ; p value < 0.00001 ;7.45

Step-by-step explanation:

Given that :

ΣX = 3,416, ΣY = 1,899, SDX = 8.84, SDY = 4.70, ΣZXZY = 109.416

Sample size, N = 141

Mean of X:

£X / N = 3416 / 141 = 24.23

Mean of Y:

£Y / N = 1899 / 141 = 13.47

B.) Correlation between the 2 variables :

£ZXZY / N - 1

= 109.416 / 140

= 0.782

C.)

Level of significance and p value :

T = [Rsqrt(n-2)] ÷ sqrt(1 - R²)

T = [0.782 * sqrt(139)] ÷ sqrt(1-0.782^2)

T = 14.79

P value from Tscore calculator

Df = 141 - 2 = 139 ; α = 0.05

Pvalue = 0.00001

Pvalue < α ; Hence, a significant positive relationship exists.

To obtain regression model :

Slope = £ZXZY / SDX²

m = 109.416 / 8.84^2 = 1. 4

yintercept = meanY - slope*x

yintercept = 13.47 - 1.4*24.3

yintercept = - 20.55

Equation in slope intercept form:

y = mx + c

y = 1.4x - 20.55

For x = 20

y = 1.4(20) - 20.55

y = 7.45

5 0
3 years ago
Rick knows that 1 cup of glue weighs 1/18 pound. he has 2/3 pound of glue. how many cups of glue does he have
Mumz [18]
(2/3) / (1/18) =
2/3 * 18/1 =
36/3 =
12 cups <===
4 0
3 years ago
Read 2 more answers
Find the magnitude of the vector with (-7, -5) and write the vector as the sum of unit vectors.
Lesechka [4]
The magnitude of vector (-7,-5) =
                         = \sqrt{ (-7)^{2} + (-5)^{2} } = \sqrt{74} = 8.6

<span>vector as the sum of unit vectors = -7 i - 5 j</span>
4 0
3 years ago
Read 2 more answers
Find the equation of a line that is perpendicular to the line y=(1/3)x+4 and contains the point (-9,0)?
torisob [31]

Answer:

y = -3x - 27

Step-by-step explanation:

0 = -3[-9] + b

-27 = b

y = -3x - 27

* Perpendicular Lines have OPPOSITE MULTIPLICATIVE INVERSE <em>RATE</em><em> </em><em>OF</em><em> </em><em>CHANGES</em><em> </em>[<em>SLOPES</em>]:

⅓ → -3

I am joyous to assist you anytime.

7 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Other questions:
  • According to Greg, perfect cherry pies have a ratio of 240 cherries to 3 pies. How many cherries does Greg need to make 9 perfec
    12·1 answer
  • What is the average rate of change of f(x) over the interval from x=5 to x=9<br><br> is it -4 or 4?
    7·1 answer
  • 23.) What is one benefit or drawback to an hourly wage?
    15·1 answer
  • Suppose $500 is invested in an account at an annual interest rate of r =5.5%, compounded continuously.
    11·1 answer
  • A blank is a polynomial equation where the largest exponent is 2
    14·1 answer
  • What is the arc measure in degrees pls help
    10·1 answer
  • Fundamental Counting Principle (L2)
    15·1 answer
  • Can someone help me out? :P
    10·2 answers
  • Does anyone know how to do this ?
    10·1 answer
  • will givebrainlyest and 46 points need asap right tringle the base of the trinagle has a base of ten and the angle on the right
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!