1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
3 years ago
6

Need help on question 22

Mathematics
2 answers:
zhannawk [14.2K]3 years ago
5 0
You multiply 5 times 10, which gives you 50. This is the length of one side. Since it's a square, all sides are the same length.

Answer: 50cm x 50cm
DIA [1.3K]3 years ago
5 0
You multiply 5 x 10
Your answer would be 50 x 50
You might be interested in
A shipment has 22 products, of which 3 are defective. Three people in turn pick up, each person picks up a product at random (no
Alla [95]

Answer:

Probability of no one picking up a defective product = 571 / 1540

Step-by-step explanation:

Total number of items = 22

non-defective items = 22-3 = 19

Probability of all three picking up non-defective products

= 19/22 * 18/21 * 17/20

= 969/1540

Probability of at least one picking up a defective product

= 1 - 969/1540

= 571/1540

(=0.371, approx.)

6 0
3 years ago
A box contains 20 light box of which five or defective it for lightbulbs or pick from the box randomly what's the probability th
Snowcat [4.5K]

Answer:

1

Step-by-step explanation:

Given:-

- The box has n = 20 light-bulbs

- The number of defective bulbs, d = 5

Find:-

what's the probability that at most two of them are defective

Solution:-

- We will pick 2 bulbs randomly from the box. We need to find the probability that at-most 2 bulbs are defective.

- We will define random variable X : The number of defective bulbs picked.

Such that,               P ( X ≤ 2 ) is required!

- We are to make a choice " selection " of no defective light bulb is picked from the 2 bulbs pulled out of the box.

- The number of ways we choose 2 bulbs such that none of them is defective, out of 20 available choose the one that are not defective i.e n = 20 - 5 = 15 and from these pick r = 2:

        X = 0 ,       Number of choices = 15 C r = 15C2 = 105 ways

- The probability of selecting 2 non-defective bulbs:

      P ( X = 0 ) = number of choices with no defective / Total choices

                       = 105 / 20C2 = 105 / 190

                       = 0.5526

- The number of ways we choose 2 bulbs such that one of them is defective, out of 20 available choose the one that are not defective i.e n = 20 - 5 = 15 and from these pick r = 1 and out of defective n = 5 choose r = 1 defective bulb:

        X = 1 ,       Number of choices = 15 C 1 * 5 C 1 = 15*5 = 75 ways

- The probability of selecting 1 defective bulbs:

      P ( X = 1 ) = number of choices with 1 defective / Total choices

                       = 75 / 20C2 = 75 / 190

                       = 0.3947

- The number of ways we choose 2 bulbs such that both of them are defective, out of 5 available defective bulbs choose r = 2 defective.

        X = 2 ,       Number of choices = 5 C 2 = 10 ways

- The probability of selecting 2 defective bulbs:

      P ( X = 2 ) = number of choices with 2 defective / Total choices

                       = 10 / 20C2 = 10 / 190

                       = 0.05263

- Hence,

    P ( X ≤ 2 ) = P ( X =0 ) + P ( X = 1 ) + P (X =2)

                     = 0.5526 + 0.3947 + 0.05263

                     = 1

7 0
3 years ago
Marco has a bag of red, blue, and green tiles. Which set of events would be considered independent?A tile is drawn and replaced,
Grace [21]
<span>Two events are said to be independent if the probability that one event occurs in no way affects the probability of the other event occurring.

Given that </span><span>Marco has a bag of red, blue, and green tiles.

The set of events that can be considered independent are:

</span>1.) <span>A tile is drawn and replaced, and then a second tile is drawn.
and
2.) </span><span>Two tiles are drawn at the same time.</span>
7 0
3 years ago
Find the value of f (x)=x²-4 and g(x)=3x+2 Find the value of f (-1)g(-1)
mrs_skeptik [129]

Answer:

3

Step-by-step explanation:

f(-1)g(-1) \text{ is the same thing as } f(-1)\cdot g(-1). \\\text{Therefore, find f(-1) and g(-1)}

f(-1)=(-1)^2-4\\f(-1)=1-4\\f(-1)=-3

g(-1)=3(-1)+2\\g(-1)=-3+2\\g(-1)=-1

Therefore:

f(-1)\cdot g(-1)\\=(-3)(-1)=3

3 0
3 years ago
Use the table and mental math to find the cost of a T-shirt and a hat.
Juli2301 [7.4K]
The answer is: $16.7
3 0
3 years ago
Other questions:
  • PLEASE HELP!!! Compare the two groups of data. Which BEST describes the data? A) the spread of data for boys is 2 centimeters gr
    7·2 answers
  • A=LW ( solve for W ) <br><br>( please include steps )
    14·1 answer
  • Evaluate each expression for the given values of the variables. SHOW ALL WORK
    11·1 answer
  • Please please help me !!
    9·1 answer
  • What are the coordinates of the image of vertex R -3,4 after a reflection across the y-axis? (–4, 3) (4, –3) (–3, –4) (3, 4)
    12·2 answers
  • It cost John $15.86 to buy 2.5 pounds<br> of ground beef. What was the cost per<br> pound?
    10·1 answer
  • PLS HELP ASAP!!! In the following diagram DE | FG and KL | FG what is the measure of angle X
    10·1 answer
  • Simplifying Please Help!
    15·1 answer
  • PLSSS HELP IF YOU TURLY KNOW THISS
    5·2 answers
  • One-eight of 32 students in the class went abroad for fall break. how many students went aboard
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!