Answer:
m∠DRM = 45°
Step-by-step explanation:
∵ PSTR is a parallelogram
∴ TS // RP ⇒ opposite sides
∴ m∠T + m∠R = 180° ⇒ (1) (interior supplementary angles)
∵ m∠T : m∠R = 1 : 3
∴ m∠R = 3 m∠T ⇒ (2)
- Substitute (2) in (1)
∴ m∠T + 3 m∠T = 180
∴ 4 m∠T = 180
∴ m∠T = 180 ÷ 4 = 45°
∴ m∠R = 3 × 45 = 135°
∵ m∠R = m∠S ⇒ opposite angles in a parallelogram
∴ m∠S = 135°
∵ RD ⊥ PS
∴ m∠RDS = 90°
∵ RM ⊥ ST
∴ m∠RMS = 90°
- In quadrilateral RMSD
∵ m∠S = 135°
∵ m∠RDS = 90°
∵ m∠RMS = 90°
∵ The sum of measure of the angles of RMSD = 360°
∴ m∠DRM = 360 - ( 135 + 90 + 90) = 45°
Answer: 50 degrees
You cut the arc measure 100 degrees in half. This is using the inscribed angle theorem. The angle 'a' is the inscribed angle that cuts off this 100 degree arc.
Answer:
6 1.5/4
Step-by-step explanation: