Answer:
A. I am really proud of you
Step-by-step explanation:
Answer:
A=$643.15
Step-by-step explanation:
We can use the formula

Now we can plug the information in the problem into the formula

Answer:
¿¿¿???
Step-by-step explanation:
first what is the question no only x = i didn´t see your computer
Answer:
put a dot on the following points ( -1, -3) (0, -2) (1, -1) and (2, 0)
Step-by-step explanation:
Not an expertise on infinite sums but the most straightforward explanation is that infinity isn't a number.
Let's see if there are anything we missed:
∞
Σ 2^n=1+2+4+8+16+...
n=0
We multiply (2-1) on both sides:
∞
(2-1) Σ 2^n=(2-1)1+2+4+8+16+...
n=0
And we expand;
∞
Σ 2^n=(2+4+8+16+32+...)-(1+2+4+8+16+...)
n=0
But now, imagine that the expression 1+2+4+8+16+... have the last term of 2^n, where n is infinity, then the expression of 2+4+8+16+32+... must have the last term of 2(2^n), then if we cancel out the term, we are still missing one more term to write:
∞
Σ 2^n=-1+2(2^n)
n=0
If n is infinity, then 2^n must also be infinity. So technically, this goes back to infinity.
Although we set a finite term for both expressions, the further we list the terms, they will sooner or later approach infinity.
Yep, this shows how weird the infinity sign is.