Explanation:
using the parabola formula:
y = a(x-h)² + k²
vertex = (h, k)
We are given a parebola equation of: y = x²+9
comparing both equations to get the vertex:
y = y
a = 1
(x-h)² = x²
x² = (x + 0)²
(x-h)² = (x + 0)²
h = 0
+k = +9
k = 9
The vertex of the parabola as (x, y): (0, 9)
Replace x with π/2 - x to get the equivalent integral

but the integrand is even, so this is really just

Substitute x = 1/2 arccot(u/2), which transforms the integral to

There are lots of ways to compute this. What I did was to consider the complex contour integral

where γ is a semicircle in the complex plane with its diameter joining (-R, 0) and (R, 0) on the real axis. A bound for the integral over the arc of the circle is estimated to be

which vanishes as R goes to ∞. Then by the residue theorem, we have in the limit

and it follows that

(-4,-24) (-1,-9) (1,1) (2,6) (4,16)
Answer:
The maximum will be 78
Step-by-step explanation:
I guess this how it would go
<span><span><span>(5)</span><span>(<span>−2</span>)</span></span>−<span><span>(2)</span><span>(<span>−3</span>)</span></span></span>
So your answer should be <span>−4</span>