Answer:
The worth of the car after 6 years is £2,134.82
Step-by-step explanation:
The amount at which Dan buys the car, PV = £2200
The rate at which the car depreciates, r = -0.5%
The car's worth, 'FV', in 6 years is given as follows;

Where;
r = The depreciation rate (negative) = -0.5%
FV = The future value of the asset
PV = The present value pf the asset = £2200
n = The number of years (depreciating) = 6
By plugging in the values, we get;

The amount the car will be worth which is its future value, FV after 6 years is FV ≈ £2,134.82 (after rounding to the nearest penny (hundredth))
Answer:
2.275%
Step-by-step explanation:
The first thing to do here is to calculate the z-score
Mathematically;
z-score = (x-mean)/SD
from the question, x = 12,300 hours , mean = 11,500 hours while Standard deviation(SD) = 400 hours
Plugging the values we have;
z-score = (12,300-11,500)/400 = 800/400 = 2
Now, we want to calculate P(z ≤ 2)
This is so because we are calculating within a particular value
To calculate this, we use the z-score table.
Mathematically;
P(z ≤ 2) = 1 - P(z > 2) = 1 - 0.97725 = 0.02275
To percentage = 2.275%
Answer:
1
Step-by-step explanation:
you cant fit more than one 2/3's in 1
The answer is yes, because rhombus =parallelogram answer is yes