Answer:
no equation given ,pls mention it in the comments
The expression would be (X-6)/7
Answer:
Step-by-step explanation:
Alyssa will correctly label the numbers 48.8 48 48.09 and 48 on the number line below Which number will be located closest to 48
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if
Example of a second order nonlinear ODE:
(D) Example of a nonlinear fourth order ODE:
Answer:
Class Boundary = 1 between the sixth and seventh classes.
Step-by-step explanation:
Lengths (mm) Frequency
1. 140 - 143 1
2. 144 - 147 16
3. 148 - 151 71
4. 152 - 155 108
5. 156 - 159 83
6. 160 - 163 18
7. 164 - 167 3
The class boundary between two classes is the numerical value between the starting value of the higher class, which is 164 for the 7th class in this case, and the ending value of the class of the lower class, which is 163 for the 6th class in this case.
Therefore the class boundary between the sixth and seventh classes
= 164 - 163 = 1
Therefore Class Boundary = 1.
It can be seen that class boundary for the frequency distribution is 1.
If we take the difference between the lower limits of one class and the lower limit of the next class then we will get the class width value.
Therefore, Class width,
w = lower limit of second class - lower limit of first class
= 144 - 140
= 4