The answer to the above equation is 3
Step-by-step explanation:
(a-b)³+(b-c)³+(c-a)³: (a-b)(b-c)(c-a)
Let us consider (a−b)= x, (b−c)= y and (c−a)= z.
Hence, It is obvious that:
x+y+z =0 ∵all the terms gets cancelled out
⇒We must remember the algebraic formula
x³+y³+z³−3xyz= (x+y+z) (x²+y²+z²-xy-xz-yz)
Since x+y+z=0 ⇒Whole “(x+y+z) (x²+y²+z²-xy-xz-yz)
” term becomes 0
x³+y³+z³−3xyz =0
Alternatively, x³+y³+z³= 3xyz
Now putting the value of x, y, z in the original equation
(a-b)³+(b-c)³+(c-a)³ can be written as 3(a-b)(b-c)(c-a) since (a−b)= x, (b−c)= y and (c−a)= z.
3(a-b)(b-c)(c-a): (a-b)(b-c)(c-a)
= 3 ∵Common factor (a-b)(b-c)(c-a) gets cancelled out
Answer to the above question is 3
Answer:
Types of variables:
Continuous variable include: income
Discrete variable include: number of dependents
Scale of measurement:
Nominal data include: Social security number
There is no ordinal data included
There is no interval data included
Ratio data include: Annual income,
Number of dependents.
Explanation:
Continuous variables are variables that are obtained by just counting, example: counting the number of times someone eats in a day.
Discrete variables are simply variables that are measured and are usually more precise than continuous variables, example: time, weight, length etc.
Nominal data are data types that are in the form of labels or names and do not have any particular order, example :social security number basically identifies a person and is not ranked or ordered in any way.
Ordinal data are data types that also in the form of names but with ranking and order.
Interval data are data types that rank and order data but with continuous measurement that may take on negative values, example measure of temperature.
Ratio data is same as interval data but does not take negative values, example we can not say that someone is -6 years old.
Answer:

Step-by-step explanation:

6 acts as the base. 15 acts as the height, because it extends from the base to meet vertex opposite the base at a 90° angle.
General formula for triangle area
a = 1/2 × b × h
plug in the numbers
a = 1/2 × 6 × 15
a = 90/2
a = 45
The area of the triangle is 45 units²