All of the above . ......
Answer:
The moles of KClO3 = 0.052 moles
Explanation:
Step 1: Calculate the pressure of oxygen gas
The oxygen has a total pressure (including water vapour) of 760 mmHg
The pressure of Oxygen = (760 - 26) mmHg
= 734 mmHg of water vapor
Step 2: Calculate the no of moles of oxygen
Using Ideal gas equation
P V = n R T
P = pressure of oxygen in N/m2 ( you should convert 734 mmHg to pascal or N/m2) = 97,858.6 N/m2 or pas
V = 2 litres = 0.002 m3
R = gas constant = 8.31
T= 27oC = 300 K
Applying this equation P V = n R T
97,858.6 x 0.002 = n x 8.31 x 300
n = 0.0785 mol of Oxygen
From the balanced equation
2 KClO 3 ---- 2 KCl + 3 O 2
3 moles of oxygen is produced from 2 moles KClO3
so 0.0785 mole of oxygen will be produced from x
x = (0.0785 x 2 ) / 3
x = 0.052 moles of KClO3
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
The correct answer is option D. i.e. <span>pressure, temperature, or concentration.
Equilibrium reactions can involve
1) changes in the temperature conditions - high or low or exothermic or endothermic.
2) Pressure - By increasing or decreasing the pressure
3) Concentration - the changes in concentration take place in either products side or reactants side.
</span>