14:12
21:18
28:24
That should be the answer
The answer to this question is 3,3
There is 8 fruits in set A and 7 in set B
Answer:
Our answer is 0.8172
Step-by-step explanation:
P(doubles on a single roll of pair of dice) =(6/36) =1/6
therefore P(in 3 rolls of pair of dice at least one doubles)=1-P(none of roll shows a double)
=1-(1-1/6)3 =91/216
for 12 players this follows binomial distribution with parameter n=12 and p=91/216
probability that at least 4 of the players will get “doubles” at least once =P(X>=4)
=1-(P(X<=3)
=1-((₁₂ C0)×(91/216)⁰(125/216)¹²+(₁₂ C1)×(91/216)¹(125/216)¹¹+(₁₂ C2)×(91/216)²(125/216)¹⁰+(₁₂ C3)×(91/216)³(125/216)⁹)
=1-0.1828
=0.8172
Answer:
A) 34.13%
B) 15.87%
C) 95.44%
D) 97.72%
E) 49.87%
F) 0.13%
Step-by-step explanation:
To find the percent of scores that are between 90 and 100, we need to standardize 90 and 100 using the following equation:

Where m is the mean and s is the standard deviation. Then, 90 and 100 are equal to:

So, the percent of scores that are between 90 and 100 can be calculated using the normal standard table as:
P( 90 < x < 100) = P(-1 < z < 0) = P(z < 0) - P(z < -1)
= 0.5 - 0.1587 = 0.3413
It means that the PERCENT of scores that are between 90 and 100 is 34.13%
At the same way, we can calculated the percentages of B, C, D, E and F as:
B) Over 110

C) Between 80 and 120

D) less than 80

E) Between 70 and 100

F) More than 130
