1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ostrovityanka [42]
2 years ago
11

Find last years salary if, after a 4% pay raise, this years salary is $31,200

Mathematics
1 answer:
lilavasa [31]2 years ago
7 0
The answer should be $29,952.... I hope this helps
You might be interested in
Julie has 30 pounds of chocolate that
Fudgin [204]

Answer:

30 boxes

Step-by-step explanation:

1 box = 1 pound

x = 30 pound

30 Cross multiplied with 1

= 1 *30 =30

therefore: Julie can fill 30 boxes

7 0
2 years ago
Hurry pls it’s very confusing
Jobisdone [24]

Answer:

1/4

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
Need help on this, need help now D:
baherus [9]

Answer:

\sqrt{34}

Step-by-step explanation:

Calculate the distance using the distance formula

d = √ (x₂ - x₁ )² + (y₂ - y₁ )²

with (x₁, y₁ ) = A(- 2, 5) and (x₂, y₂ ) = B(3, 8)

d = \sqrt{(3+2)^2+(8-5)^2}

   = \sqrt{5^2+3^2}

   = \sqrt{25+9}

   = \sqrt{34}

5 0
3 years ago
An amount of $350,000 is borrowed for a period of 30 years at an interest rate of 5.5%. The amortization schedule for this
Annette [7]
350,000 . 250,00 . 1,987.26
8 0
2 years ago
Solve the following differential equation using using characteristic equation using Laplace Transform i. ii y" +y sin 2t, y(0) 2
kifflom [539]

Answer:

The solution of the differential equation is y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

Step-by-step explanation:

The differential equation is given by: y" + y = Sin(2t)

<u>i) Using characteristic equation:</u>

The characteristic equation method assumes that y(t)=e^{rt}, where "r" is a constant.

We find the solution of the homogeneus differential equation:

y" + y = 0

y'=re^{rt}

y"=r^{2}e^{rt}

r^{2}e^{rt}+e^{rt}=0

(r^{2}+1)e^{rt}=0

As e^{rt} could never be zero, the term (r²+1) must be zero:

(r²+1)=0

r=±i

The solution of the homogeneus differential equation is:

y(t)_{h}=c_{1}e^{it}+c_{2}e^{-it}

Using Euler's formula:

y(t)_{h}=c_{1}[Sin(t)+iCos(t)]+c_{2}[Sin(t)-iCos(t)]

y(t)_{h}=(c_{1}+c_{2})Sin(t)+(c_{1}-c_{2})iCos(t)

y(t)_{h}=C_{1}Sin(t)+C_{2}Cos(t)

The particular solution of the differential equation is given by:

y(t)_{p}=ASin(2t)+BCos(2t)

y'(t)_{p}=2ACos(2t)-2BSin(2t)

y''(t)_{p}=-4ASin(2t)-4BCos(2t)

So we use these derivatives in the differential equation:

-4ASin(2t)-4BCos(2t)+ASin(2t)+BCos(2t)=Sin(2t)

-3ASin(2t)-3BCos(2t)=Sin(2t)

As there is not a term for Cos(2t), B is equal to 0.

So the value A=-1/3

The solution is the sum of the particular function and the homogeneous function:

y(t)= - \frac{1}{3} Sin(2t) + C_{1} Sin(t) + C_{2} Cos(t)

Using the initial conditions we can check that C1=5/3 and C2=2

<u>ii) Using Laplace Transform:</u>

To solve the differential equation we use the Laplace transformation in both members:

ℒ[y" + y]=ℒ[Sin(2t)]

ℒ[y"]+ℒ[y]=ℒ[Sin(2t)]  

By using the Table of Laplace Transform we get:

ℒ[y"]=s²·ℒ[y]-s·y(0)-y'(0)=s²·Y(s) -2s-1

ℒ[y]=Y(s)

ℒ[Sin(2t)]=\frac{2}{(s^{2}+4)}

We replace the previous data in the equation:

s²·Y(s) -2s-1+Y(s) =\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)-2s-1=\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)=\frac{2}{(s^{2}+4)}+2s+1=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)}

Y(s)=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)(s^{2}+1)}

Y(s)=\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}

Using partial franction method:

\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}=\frac{As+B}{s^{2}+4} +\frac{Cs+D}{s^{2}+1}

2s^{3}+s^{2}+8s+6=(As+B)(s²+1)+(Cs+D)(s²+4)

2s^{3}+s^{2}+8s+6=s³(A+C)+s²(B+D)+s(A+4C)+(B+4D)

We solve the equation system:

A+C=2

B+D=1

A+4C=8

B+4D=6

The solutions are:

A=0 ; B= -2/3 ; C=2 ; D=5/3

So,

Y(s)=\frac{-\frac{2}{3} }{s^{2}+4} +\frac{2s+\frac{5}{3} }{s^{2}+1}

Y(s)=-\frac{1}{3} \frac{2}{s^{2}+4} +2\frac{s }{s^{2}+1}+\frac{5}{3}\frac{1}{s^{2}+1}

By using the inverse of the Laplace transform:

ℒ⁻¹[Y(s)]=ℒ⁻¹[-\frac{1}{3} \frac{2}{s^{2}+4}]-ℒ⁻¹[2\frac{s }{s^{2}+1}]+ℒ⁻¹[\frac{5}{3}\frac{1}{s^{2}+1}]

y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

3 0
3 years ago
Other questions:
  • SOMEONE PLZZ HELP
    9·1 answer
  • Find the midpoint of line AB.<br> A(-4,2) B(0,-4)
    15·2 answers
  • <img src="https://tex.z-dn.net/?f=Please%5C%3Bsimplify%5C%3Bthe%5C%3Bfollowing%5C%3Bfor%5C%3B50%5C%3BPoints%21%21%5C%5C%5C%5C1..
    10·2 answers
  • Simplify the expression: (15-8)^9<br> —————<br> [ (5+2)^2]^3
    14·1 answer
  • Input output f(x)= -5(x+7)
    10·1 answer
  • Sarah is cutting ribbons for a pep rally. The length of each ribbon needs to be 3.57 inches if she needs 1,000 ribbons what is t
    13·1 answer
  • A rectangular field measures 400yds x 600yds. Find the length of the diagonal of the field.
    12·1 answer
  • When adding 2/3 + 4/5, what step must be completed first?
    11·1 answer
  • I WILL MARK BRIANLIEST PLLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
    9·1 answer
  • Question<br> What expression represents the area of the square?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!