Answer:

Step-by-step explanation:
The picture of the question in the attached figure
we know that
A <u><em>circumscribed angle</em></u> is the angle made by two intersecting tangent lines to a circle
so
In this problem
BC and CD are tangents to the circle
BC=CD ----> by the Two Tangent Theorem
That means
Triangle ABC and Triangle ADC are congruent
so

Find the measure of angle BAC
In the right triangle ABC

substitute given value


Find the measure of angle BAD


Find the measure of minor arc BD
we know that
-----> by central angle
therefore

Answer:
I dont really do this kind of work but i think its A
Step-by-step explanation:
Answer:
104°
Step-by-step explanation:
The straight line for
forms an angle of 180°
Therefore,




Looks like you just evaluated the summand for the given value of

, whereas the question is asking you to find the value of the sum for the first

terms.
Let

. Then

is the

th partial sum.

happens to be the first term in the series, which is why that box is marked correct:

But the next partial sum is not correct:

and this is not the same notion as the second term (which indeed is 0.75) in the series.
Explanation:
We usually use graphs to solve two linear equations in two unknowns.
The basic idea is that a graph of an equation is the pictorial representation of all of the points that satisfy the equation. So, where the graph of one equation crosses the graph of another, the point where they cross will satisfy both equations.
Finding a solution means finding values of the variables that satisfy all of the equations. Hence, the point of intersection is the solution of the equations.
__
To solve linear equations by graphing, graph each of the equations. Then find the coordinates of the point where the lines intersect. Those coordinates are the solution to the equations.
If the solution is not at a grid point on the graph, determining its exact value may not be easy. This can often be aided by a graphing calculator, which can often tell you the point of intersection to calculator accuracy.
__
If the lines don't intersect, there are no solutions. If they are the same line (intersect everywhere), then there are an infinite number of solutions.