Answer:
Letters can be chosen in 12 different ways, if order matters, or 6 different ways, if order doesn't matter.
Step-by-step explanation:
Since we want to choose 2 letters, without replacement, from the 4 letters A, B, C, and D, to determine in how many ways can this be done, if the order of the choices matters, and in how many ways can this be done, if the order of the choices does not matter, the following calculations must be performed:
If order matters =
(4 x 3 x 2 x 1) / 2 = X
24/2 = X
12 = X
If the order doesn't matter =
12/2 = X
6 = X
Therefore, letters can be chosen in 12 different ways, if order matters, or 6 different ways, if order doesn't matter.
Answer:
0.9586
Step-by-step explanation:
From the information given:
7 children out of every 1000 children suffer from DIPG
A screening test designed contains 98% sensitivity & 84% specificity.
Now, from above:
The probability that the children have DIPG is:


= (0.98 × 0.007) + 0.16( 1 - 0.007)
= 0.16574
So, the probability of not having DIPG now is:



= 0.9586
First, let’s all acknowledge that whoever comes up with problems like this WANTS kids to hate math...smh
I’m sure there is a prettier way to solve this, but here’s what I did:
8(2.25) + 3(22.50) =
18 + 67.50 = 85.50 per “set” of balls/jerseys
400/85.50 = 4.678 = number of “sets” he can buy. Round down to 4 so we have room for tax.
85.5 x 4 “sets”= $342
Tax on 342 is 0.06 x 342 = 20.52
$342 + 20.52 = $362.52 spent
Basketballs = 4 sets x 8 balls per set= 32
Jerseys = 4 sets x 3 jerseys per set= 12
32 basketballs, 12 jerseys, $362.52 spent
5^4/5
Multiply the number by it's exponent
625/5
Divide
Final Answer: 125