60x20=1200
1200/300=4
4x1/2=4/2=2 pounds of grass seed
Answer:
Since the plane if cutting through the prism to make 5 sides, than the original shape needs to have less than 5.
A prism, is a 3D shape, so you can't have a 2 sided shape.
Now you have a choice of 3+or 4 sides.
A 3 sides shape is a triangle, which also can't be cut into a 5 sided prism, so the answer would need to be 4.
Step-by-step explanation:
Answer:
360,000
Step-by-step explanation:
Answer:
Choices 1 and 4 are correct.
Step-by-step explanation:
We first need to find what the slope of the line is. That way, we can find out which possible answers are perpendicular to it:

Since we now have the slope, we need the negative reciprocal of it. Remember: if x is the slope, it's negative reciprocal will be
. Therefore, if the line's slope is 3, then we need to find answers with a slope of
.
The first answer is correct, as you have marked. The second answer, while written a little weirdly, does show the slope as 3, which we know as wrong. The third choice is not correct, however. This equation is written in point-slope form, where
. The only variable we have to worry about is m, which, in the third choice, is 3. The fourth answer is correct, which sounds weird at first. Let's put that equation into slope-intercept form:

Equations like these can be real sneaky, so it's important not to jump to conclusions with them.
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²