if the sphere has a diameter of 5, then its radius is half that, or 2.5.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=2.5 \end{cases}\implies V=\cfrac{4\pi (2.5)^3}{3}\implies V=\cfrac{62.5\pi }{3} \\\\\\ V\approx 65.44984694978736\implies V=\stackrel{\textit{rounded up}}{65.45}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D2.5%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%282.5%29%5E3%7D%7B3%7D%5Cimplies%20V%3D%5Ccfrac%7B62.5%5Cpi%20%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20V%5Capprox%2065.44984694978736%5Cimplies%20V%3D%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B65.45%7D)
Draw a right triangle to represent the problem.
The vertical height of the triangle is 9 ft, and it represents the tree.
The horizontal length, at the bottom of the tree is ground level and has a length of 13 ft.
Let x = angle of elevation.
By definition,
tan x = 9/13 = 0.6923
x = arctan(0.6923) = 34.7 deg. = 35 deg (approx)
Answer: 35°
Answer:
false
Step-by-step explanation:
<span>x^2 • y^–3 • x^4
= x^6 / y^3</span>
Answer:
The coordinates of B is (-5, 4).