If exactly one woman is to sit in one of the first 5 seats, then it means that 4 men completes the first 5 seats.
No of ways 4 men can be selected from 6 men = 6C4 = 15
No of ways 4 men can sit on 5 seats = 5P4 = 120
No of ways 1 woman can be selected fom 8 women = 8C1 = 8
No of ways 1 woman can sit on 5 seats = 5P1 = 5
No of ways <span>that exactly one woman is in one of the first 5 seats = 15 * 120 * 8 * 5 = 72,000
No of ways 14 people can be arranged in 14 seats = 14!
Probability that exactly one woman is in one of the first 5 seats = 72,000 / 14! = 0.0000008259 = 0.000083%
</span>
Answer:
124
Step-by-step explanation:
360 - (90+146) = 124
Answer:
The measure of the angle JKG is:
m∠JKG = 56°
Step-by-step explanation:
<u>Given</u>
m∠JKG = 76-2x
m∠FHK = 6x-4
J is a midpoint of the segment FG and K is a midpoint of the segment GH.
<u>To determine</u>
m∠JKG = ?
Given that J is a midpoint of the segment FG and K is a midpoint of the segment GH. Thus, making two similar triangles, ΔJGK and ΔFGH
We know that two triangles are similar if the only difference is size. So, the angles remain the same.
so m∠JKG and m∠FHK are equal.
i.e.
m∠JKG = m∠FHK
substitute m∠JKG = 76-2x and m∠FHK = 6x-4
76-2x = 6x-4
6x+2x = 76 + 4
8x = 80
divide both sides by 8
8x/8 = 80/8
x = 10
Therefore, the value of x = 10
As
m∠JKG = 76-2x
substitute x = 10
m∠JKG = 76 - 2(10)
= 76 - 20
= 56°
Therefore, measure of the angle JKG is:
m∠JKG = 56°
<span> To replace each letter with its value, and then finish it by doing the order of the operation/ solve it.</span>
Here's a PDF file with the solution... Powered by Wolfram Mathematica