1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
11

What will happen when the universe stops expanding?

Physics
1 answer:
Vesna [10]3 years ago
7 0
The universe will collapse
You might be interested in
You are creating waves in a rope by shaking your hand back and forth. Without changing the distance your hand moves, you begin t
scoundrel [369]

Answer:

<u>Amplitude - remains the same</u>

<u>Frequency - increases</u>

<u>Period - decreases</u>

<u>Velocity - remains the same.</u>

<u />

Explanation:

The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.

The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.

The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.

The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.

7 0
2 years ago
A 0.350kg bead slides on a curved fritionless wire,
LuckyWell [14K]

Answer:

h2 = 0.092m

Explanation:

From a balance of energy from point A to point B, we get speed before the collision:

m1*g*h-\frac{m1*V_B^2}{2}=0  Solving for Vb:

V_B=\sqrt{2gh}=6.56658m/s

Since the collision is elastic, we now that velocity of bead 1 after the collision is given by:

V_{B'}=V_B*\frac{m1-m2}{m1+m2} = \sqrt{2gh}* \frac{m1-m2}{m1+m2}=-1.34316m/s

Now, by doing another balance of energy from the instant after the collision, to the point where bead 1 stops, we get the distance it rises:

m1*g*h2-\frac{m1*V_{B'}^2}{2}=0 Solving for h2:

h2 = 0.092m

6 0
3 years ago
A wave traveling in water has a frequency of 500Hz and a wavelength of 3.00 meters. What is the speed of the wave?
jenyasd209 [6]

Answer:

1500 m/s

Explanation:

3 0
2 years ago
A 53.3 kg woman slides down a 35.0° hill with an acceleration of 4.10 m/s. What is the friction force acting on the woman?
lorasvet [3.4K]

Answer:

I attached an image that should help.

Explanation:

Check it out.

5 0
2 years ago
A 1.05 kg block slides with a speed of 0.865 m/s on a frictionless horizontal surface until it encounters a spring with a force
djyliett [7]

Answer:

a) U = 0 J    

k = 0.393 J

E = 0.393 J

b) U = 0.0229J

k = 0.370 J

E = 0.393 J

c) U = 0.0914 J

k = 0.302 J

E = 0.393 J

d) U = 0.206 J

k = 0.187 J

E = 0.393 J

e) U = 0.366 J

k = 0.027 J

E = 0.393 J

Explanation:

Hi there!

The equations of kinetic energy and elastic potential energy are as follows:

k = 1/2 · m · v²

U = 1/2 · ks · x²

Where:

m = mass of the block.

v = velocity.

ks = spring constant.

x = displacement of the string.

a) When the spring is not compressed, the spring potential energy will be zero:

U = 1/2 · ks · x²

U = 1/2 · 457 N/m · (0 cm)²

U = 0 J

The kinetic energy of the block will be:

k = 1/2 · m · v²

k = 1/2 · 1.05 kg · (0.865 m/s)²

k = 0.393 J

The mechanical energy will be:

E = k + U = 0.393 J + 0 J = 0.393 J

This energy will be conserved, i.e., it will remain constant because there is no work done by friction nor by any other dissipative force (like air resistance). This means that the kinetic energy will be converted only into spring potential energy (there is no thermal energy due to friction, for example).

b) The spring potential energy will be:

U = 1/2 · 457 N/m · (0.01 m)²

U = 0.0229 J

Since the mechanical energy has to remain constant, we can use the equation of mechanical energy to obtain the kinetic energy:

E = k + U

0.393 J = k + 0.0229 J

0.393 J - 0.0229 J = k

k = 0.370 J

c) The procedure is now the same. Let´s calculate the spring potential energy with x = 0.02 m.

U = 1/2 · 457 N/m · (0.02 m)²

U = 0.0914 J

Using the equation of mechanical energy:

E = k + U

0.393 J = k + 0.0914 J

k = 0.393 J - 0.0914 J = 0.302 J

d) U = 1/2 · 457 N/m · (0.03 m)²

U = 0.206 J

E = 0.393 J

k = E - U = 0.393 J - 0.206 J

k = 0.187 J

e) U = 1/2 · 457 N/m · (0.04 m)²

U = 0.366 J

E = 0.393 J

k = E - U = 0.393 J - 0.366 J = 0.027 J.

4 0
3 years ago
Other questions:
  • The thin, narrow structure of the capillaries is well-suited to their function because the capillaries _____.
    15·2 answers
  • Your classmate states that only precious minerals, such as diamonds, are valuable. Based on your lesson on the rock cycle, you _
    6·2 answers
  • Tom Cruise jumped from one building to other building while filming the roof chase scene in Mission: Impossible - Fallout. He di
    5·1 answer
  • What produces magnetic fields?
    10·1 answer
  • A closed, rigid tank fitted with a paddle wheel contains 2 kg of air, initially at 300 K. During an interval of 5 minutes, the p
    7·1 answer
  • How much heat is needed to rise the temperature by 10 oc of mass 5kg if substance of specific heat capacity 300j/kg of What is t
    5·1 answer
  • If you put 3.27 moles of an ideal
    15·2 answers
  • A circle has radius of 10cm what is the area in m square. with explantion​
    13·1 answer
  • A book moving across a desk has a net force equaling 60 N, to the right.
    14·1 answer
  • (a) State and explain which of the arrangements would have the greater extension of spring(s). (b) Explain if there are any chan
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!