Answer:
Velocity of throwing = 34.335 m/s
Explanation:
Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.
Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s
Equation of motion result we have v = u + at
Substituting
0 = u - 9.81 x 3.5
u = 34.335 m/s
Velocity of throwing = 34.335 m/s
Answer:60 ohms
Explanation:
R1=30 ohms
R2=15 ohms
R3=15 ohms
Let the total resistance be R
R=R1 + R2 + R3
R=30 + 15 +15
R=60
Total resistance is 60 ohms
Answer:
Crumple zones are designed to absorb and redistribute the force of a collision. ... Also known as a crush zone, crumple zones are areas of a vehicle that are designed to deform and crumple in a collision. This absorbs some of the energy of the impact, preventing it from being transmitted to the occupants.
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.