The charge present determines a force to be attractive or repulsive.
The charges acquired by two bodies determines the Force as Attractive Or Repulsive.
Electric Force applied due to Electrical charges is same in magnitude but opposite in direction. This corresponds this phenomenon equivalent to the Newton's Third Law.
Examples of the experiments and observations:
- On combing hair through a comb and then keeping it close to small pieces of paper shows attraction of paper pieces towards the comb.
This occurs due to the Electric charges present in the comb that induces charge in paper pieces leading to their attraction.
- In both Gravitational Force and Coulomb force, the force remains inversely proportional to the square of the distance following the Inverse Square Law being the Central Force system. This only differs by the fact that in Gravitational Force, masses are used and in Coulomb force, charges are used.
The more the distance between the charges, the less is the Electric Force.
The lesser the distance between the charges, the more is the Electric Force.
If both the objects are charged the same i.e. either positive or negative then the Force is Repulsive and if the charges are Oppositely charged then the force is attractive.
Hence, the charge present determines a force to be attractive or repulsive.
Learn more about Coulomb Force here, brainly.com/question/15451944
#SPJ4
Hello.
The answer is <span>remains the same.
</span>The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. <span>So the chemical energy is just being converted into heat and light.
</span>
Have a nice day
Search it up bruhhhhhhhhhhhhh
Answer:
You can see the moon when it is in the perfect spot and it's reflecting the right amount of light. :)
Hope this helps! If you don't mind, please mark as brainliest! Thx!
The meat in the freezer is frozen.
Everything else in the freezer is frozen too.
Nothing in the refrigerator is frozen.
The freezer is colder than the refrigerator. <span>
Mildred takes a pound of frozen hamburger meat out of the freezer
and puts it into the refrigerator. The meat is colder than anything
else that's in there.
Heat flows from the air in the refrigerator into the frozen hamburger (C)
and warms up the meat. When the temperature of the meat warms up
to the temperature of the air in the refrigerator, the heat stops flowing.</span>