Answer:
75degree don't forget wind and gravity force pulling down
Answer:
C. Fill two identical pots with equal volumes of salt water and tap water and use a stopwatch to determine the time it takes each pot to boil.
Explanation:
<u>A) is incorrect</u> because Peter should have the same testing environment for both of his experiments.
He should choose the same method of boiling the salt water and tap water because the stovetop and the microwave could also affect the results and make them unreliable.
<u>B) is incorrect</u> because Peter should not estimate the time it takes the salt water and tap water to boil.
Peter should measure and record the amount of time that it takes these substances to boil in order to have an accurate, valid experimental thesis.
<u>C) is correct</u> because Peter uses the same volume of salt water and tap water, fills them into two identical pots, and uses a stopwatch to determine the amount of time it takes each pot to boil.
The stopwatch makes the experiment more valid and accurate compared to the previous methods, and the identical pots and amounts of water help this experiment become even more precise.
<u>D) is incorrect</u> because the variables in the experiment are not controlled amounts and will therefore produce an inaccurate and invalid experiment.
Answer:
Velocity formulae should be used in order to know the answer
Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.