Is there any other information given on this?
Answer:
(2.83 , 1 , 4)
Step-by-step explanation:

Rewrite these equations in matrix form
![\left[\begin{array}{ccc}2&2&-1\\4&-2&-2\\3&3&-4\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}4\\2\\-4\end{array}\right] \\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%26-1%5C%5C4%26-2%26-2%5C%5C3%263%26-4%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C2%5C%5C-4%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
we can write it like this,

so to solve it we need to take the inverse of the 3 x 3 matrix A then multiply it by B.
We get the inverse of matrix A,
![A^{-1}=\left[\begin{array}{ccc}7/15&1/6&-1/5\\1/3&-1/6&0\\3/5&0&-2/5\end{array}\right] \\](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%2F15%261%2F6%26-1%2F5%5C%5C1%2F3%26-1%2F6%260%5C%5C3%2F5%260%26-2%2F5%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C)
now multiply the matrix with B
![X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}7/15&1/6&-1/5\\1/3&-1/6&0\\3/5&0&-2/5\end{array}\right]\left[\begin{array}{ccc}4\\2\\-4\end{array}\right] \\\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}2.83\\1\\4\end{array}\right] \\](https://tex.z-dn.net/?f=X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%2F15%261%2F6%26-1%2F5%5C%5C1%2F3%26-1%2F6%260%5C%5C3%2F5%260%26-2%2F5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C2%5C%5C-4%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2.83%5C%5C1%5C%5C4%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Answer: 
<u>Step-by-step explanation:</u>
Isolate w by performing the following steps
- Multiply by 6 on both sides to clear the denominator
- Subtract 3 from both sides
- Divide both sides by 2
![y=\dfrac{1}{2}+\dfrac{w}{3}\\\\\\6\bigg[y=\dfrac{1}{2}+\dfrac{w}{3}\bigg]\quad \implies \quad 6y=3+2w\\\\\\6y-3=3-3+2w\quad \implies \quad 6y-3=2w\\\\\\\dfrac{6y-3}{2}=\dfrac{2w}{2}\quad \implies \quad \large\boxed{\dfrac{6y-3}{2}=w}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7Bw%7D%7B3%7D%5C%5C%5C%5C%5C%5C6%5Cbigg%5By%3D%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7Bw%7D%7B3%7D%5Cbigg%5D%5Cquad%20%5Cimplies%20%5Cquad%206y%3D3%2B2w%5C%5C%5C%5C%5C%5C6y-3%3D3-3%2B2w%5Cquad%20%5Cimplies%20%5Cquad%206y-3%3D2w%5C%5C%5C%5C%5C%5C%5Cdfrac%7B6y-3%7D%7B2%7D%3D%5Cdfrac%7B2w%7D%7B2%7D%5Cquad%20%5Cimplies%20%5Cquad%20%5Clarge%5Cboxed%7B%5Cdfrac%7B6y-3%7D%7B2%7D%3Dw%7D)
It would like this for solving n