Answer:
b) 252 Hz or 260 Hz
c) 0.25 s
Explanation:
b) The frequency of the beats is 4 Hz, and one tuning fork has a frequency of 256 Hz. Therefore, the second tuning fork is either 4 Hz lower or 4 Hz higher.
f = 252 Hz or 260 Hz
c) Period is the inverse of frequency.
T = 1/f
T = 1 / (4 Hz)
T = 0.25 s
The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
quintal and metric tone.
Explanation:
1 quintal= 100kg
1 metric =1000kg
quintal measures mass of cars, trucks etc, but metric measures bigger things like cargo ships
hope it helps
Answer:
Option C. The force between them would be 4 times larger than with the
initial masses.
Explanation:
To know which option is correct, we shall determine the force of attraction between the two masses when their masses are doubled. This can be obtained as follow:
From:
F = GMₐM₆/ r²
Keeping G/r² constant, we have
F₁ = MₐM₆
Let the initial mass of both objects to be m
F₁ = MₐM₆
F₁ = m × m
F₁ = m²
Next, let the masses of both objects doubles i.e 2m
F₂ = MₐM₆
F₂ = 2m × 2m
F₂ = 4m²
Compare the initial and final force
Initial force (F₁) = m²
Final (F₂) = 4m²
F₂ / F₁ = 4m² / m²
F₂ / F₁ = 4
F₂ = 4F₁ = 4m²
From the above illustrations, we can see that when the mass of both objects doubles, the force between them would be 4 times larger than with the
initial masses.
Thus, option C gives the correct answer to the question.