Answer:
75806
Step-by-step explanation:
82,277-6,471=75806
Answer:
The number of red pens is 20.
The number of blue pens is 4.
Step-by-step explanation:
We are given that, the ratio of number of red pens to the number of blue pens is 5 : 1.
∴ Let us assume that the number of red pens be 5<em>x</em> and number of blue pens be <em>x</em>.
Total number of pens in the desk drawer = 24
Now, according to question :
Number of red pens + Number of blue pens = 24
⇒5<em>x</em> + <em>x</em> = 24
⇒6<em>x</em> = 24
⇒![x=\frac{24}{6}=4](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B24%7D%7B6%7D%3D4)
So, number of red pens in the drawer = 5<em>x</em> = 5 × 4 = 20
Number of blue pens in the drawer = <em>x</em> = 4
Hello!
![\large\boxed{21x^7y^{11}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B21x%5E7y%5E%7B11%7D%7D%7D)
(7x²y³)(3x⁵y⁸)
Multiply by ADDING exponents with the same base:
(7 * 3) (x² * x⁵) (y³ * y⁸)
21 * x² ⁺ ⁵ * y³ ⁺ ⁸
Simplify:
21 * x⁷ * y¹¹
21x⁷y¹¹
Cos ø = Base/ Hypotenuse
Cos 30 = y/32
Root 3/2 = y/32
y= 16root3
X= 16
Answer: ![\bold{\dfrac{4\pm \sqrt{6}}{2}}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cdfrac%7B4%5Cpm%20%5Csqrt%7B6%7D%7D%7B2%7D%7D)
<u>Step-by-step explanation:</u>
![\dfrac{3}{y-2}-2=\dfrac{1}{y-1}\\\\\\\text{Multiply by the LCD (y-2)(y-1) to clear the denominator:}\\\\\dfrac{3}{y-2}(y-2)(y-1)-2(y-2)(y-1)=\dfrac{1}{y-1}(y-2)(y-1)\\\\\\3(y-1)-2(y-2)(y-1)=1(y-2)\\\\3y-3-2(y^2-3y+2)=y-2\\\\3y-3-2y^2+6y-4=y-2\\\\-2y^2+9y-7=y-2\\\\0=2y^2-8y+5\quad \rightarrow \quad a=2,\ b=-8,\ c=5\\\\\\\text{Quadratic formula is: }x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}\\\\\\x=\dfrac{-(-8)\pm \sqrt{(-8)^2-4(2)(5)}}{2(2)}\\\\\\.\ =\dfrac{8\pm \sqrt{64-40}}{2(2)}](https://tex.z-dn.net/?f=%5Cdfrac%7B3%7D%7By-2%7D-2%3D%5Cdfrac%7B1%7D%7By-1%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BMultiply%20by%20the%20LCD%20%28y-2%29%28y-1%29%20to%20clear%20the%20denominator%3A%7D%5C%5C%5C%5C%5Cdfrac%7B3%7D%7By-2%7D%28y-2%29%28y-1%29-2%28y-2%29%28y-1%29%3D%5Cdfrac%7B1%7D%7By-1%7D%28y-2%29%28y-1%29%5C%5C%5C%5C%5C%5C3%28y-1%29-2%28y-2%29%28y-1%29%3D1%28y-2%29%5C%5C%5C%5C3y-3-2%28y%5E2-3y%2B2%29%3Dy-2%5C%5C%5C%5C3y-3-2y%5E2%2B6y-4%3Dy-2%5C%5C%5C%5C-2y%5E2%2B9y-7%3Dy-2%5C%5C%5C%5C0%3D2y%5E2-8y%2B5%5Cquad%20%5Crightarrow%20%5Cquad%20a%3D2%2C%5C%20b%3D-8%2C%5C%20c%3D5%5C%5C%5C%5C%5C%5C%5Ctext%7BQuadratic%20formula%20is%3A%20%7Dx%3D%5Cdfrac%7B-b%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5C%5C%5Cx%3D%5Cdfrac%7B-%28-8%29%5Cpm%20%5Csqrt%7B%28-8%29%5E2-4%282%29%285%29%7D%7D%7B2%282%29%7D%5C%5C%5C%5C%5C%5C.%5C%20%3D%5Cdfrac%7B8%5Cpm%20%5Csqrt%7B64-40%7D%7D%7B2%282%29%7D)
![.\ =\dfrac{8\pm \sqrt{24}}{2(2)}\\\\\\.\ =\dfrac{8\pm 2\sqrt{6}}{2(2)}\\\\\\.\ =\dfrac{4\pm \sqrt{6}}{2}](https://tex.z-dn.net/?f=.%5C%20%3D%5Cdfrac%7B8%5Cpm%20%5Csqrt%7B24%7D%7D%7B2%282%29%7D%5C%5C%5C%5C%5C%5C.%5C%20%3D%5Cdfrac%7B8%5Cpm%202%5Csqrt%7B6%7D%7D%7B2%282%29%7D%5C%5C%5C%5C%5C%5C.%5C%20%3D%5Cdfrac%7B4%5Cpm%20%5Csqrt%7B6%7D%7D%7B2%7D)