Answer:
1) 2,1,2
2) 2,2,1,1
3)2,1,2
4)2,2,3
5)2,3,1,3
6 [ I cannot answer that]
7)6,1,2
About 2 gallons. (I got 1.92592592593)
The given question is incomplete. The complete question is
If 1.0 M HI is placed into a closed container and the reaction is allowed to reach equilibrium at 25∘C∘C, what is the equilibrium concentration of H2 (g). Given the equilibrium constant is 62.
Answer: The equilibrium concentration of
is 0.498 M
Explanation:
Initial concentration of
= 1.0 M
The given balanced equilibrium reaction is,

initial (1.0) M 0 0
At eqm (1.0-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2]\times [I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
Now put all the given values in this expression, we get :

By solving we get :

Thus the equilibrium concentration of
is 0.498 M
I believe the answer is 70.6 moles
Answer:
Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom. ... Covalent compounds tend to be soft, and have relatively low melting and boiling points.