Solution:
1) Rewrite it in the form {a}^{2}-2ab+{b}^{2}, where a={d}^{2} and b=4
{({d}^{2})}^{2}-2({d}^{2})(4)+{4}^{2}
2) Use Square of Difference: {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}
{({d}^{2}-4)}^{2}
3) Rewrite {d}^{2}-4 in the form {a}^{2}-{b}^{2} , where a=d and b=2
{({d}^{2}-{2}^{2})}^{2}
4) Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)
{((d+2)(d-2))}^{2}
5) Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}
{(d+2)}^{2}{(d-2)}^{2}
Done!
The rotation of the triangle is 270 degrees clockwise, or 90 degrees counterclockwise. Most commonly, clockwise measurements are used when it comes to rotations.
I hope this helped. Let me know if I was correct please.
Answer:
5
Step-by-step explanation:
Constant= # without variable
Answer:
445788
Step-by-step explanation:
OMG too difficult man!!
Thanks to my calculator to solve this hard question