Answer:
A. donation of excited electrons by chlorophyll a to a primary electron acceptor
Explanation:
Photosystems are structures located at the thylakoid membrane that act to harvest energy light in order to convert it into chemical energy. Each photosystem is composed of a light-harvesting complex and a core complex, which in turn is composed of a reaction center. The photosynthetic reaction centers are multi-protein complexes that use light energy to catalyze the electron transfer across the chloroplast thylakoid membrane against a thermodynamic gradient. Moreover, antenna pigments are pigments that capture the energy from photons in order to transfer energy to other pigments in the photosystem (e.g., chlorophyll B and carotenes are antenna pigments, whereas chlorophyll A is the core pigment). Light energy absorbed by antenna pigments in the photosystems is transferred to the reaction center chlorophyll A molecules, thereby exiting electrons in the reaction center. A reaction center consists of two chlorophyll A molecules, which donate electrons to the primary electron acceptor.
Answer:
Photon radiation
A high-energy photon beam is by far the most common form of radiation used for cancer treatment. It is the same type of radiation that is used in x-ray machines, and comes from a radioactive source such as cobalt, cesium, or a machine called a linear accelerator (linac, for short).
The speed of radioactive particles is also an important factor in medical use. Beta particles travel very fast. This, combined with their small size, gives them significant penetrating power. In cancer treatment, for example, beams of beta particles can be created outside the patient's body and directed at tumors.
<span>The frontal and parietal bones of the skull are susceptible to compressed skull fractures. This is especially important in newborn babies. There is a location in the skull called the Anterior Fontanelle, where two frontal and 2 parietal bones meet. This area of the skull is very soft until as late as 2 years old.</span>
Answer:
<em>Different around the world</em>
Explanation:
Hope this helps! (please mark as brainiest!)
According to the Big Bang theory, the universe was once very dense and is now expanding.