Taxation is how much the government taxes you
Answer:
It has to 4.3 because u divided it from the sum to get the an porportional answer so u had to solve it from a measurement on how many seeds does which the mass revolves around
Step-by-step explanation:
Answer:
25 years
Step-by-step explanation:
Solution:-
- Data for the average daily temperature on January 1 from 1900 to 1934 for city A.
- The distribution X has the following parameters:
Mean u = 24°C
standard deviation σ = 4°C
- We will first construct an interval about mean of 1 standard deviation as follows:
Interval for 1 standard deviation ( σ ):
[ u - σ , u + σ ]
[ 24 - 4 , 24 + 4 ]
[ 20 , 28 ] °C
- Now we will use the graph given to determine the number of years the temperature T lied in the above calculated range: [ 20 , 28 ].
T1 = 20 , n1 = 2 years
T2 = 21 , n2 = 3 years
T3 = 22 , n3 = 2 years
T4 = 23 , n4 = 4 years
T5 = 24 , n5 = 3 years
T6 = 25 , n6 = 3 years
T7 = 26 , n7 = 5 years
T8 = 27 , n8 = 2 years
T5 = 28 , n9 = 1 years
- The total number of years:
∑ni = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9
= 2 + 3 + 2 + 4 + 3 + 3 + 5 + 2 + 1
= 25 years
The first thing we must do for this case is to find the surface area of the rectangular prism.
We have then:
A = 2 * (l * h) + 2 * (h * w) + 2 * (w * l)
Where,
w: width
l: long
h: height
Substituting values we have:
A = 2 * (10 * 8) + 2 * (8 * 8) + 2 * (8 * 10)
A = 448 in ^ 2
Answer:
the least amount of wrapping paper needed to wrap the gift box answer is:
A = 448 in ^ 2
Answer:
a) 
b) 
c) 
Step-by-step explanation:
<u>For the question a *</u> you need to find a polynomial of degree 3 with zeros in -3, 1 and 4.
This means that the polynomial P(x) must be zero when x = -3, x = 1 and x = 4.
Then write the polynomial in factored form.

Note that this polynomial has degree 3 and is zero at x = -3, x = 1 and x = 4.
<u>For question b, do the same procedure</u>.
Degree: 3
Zeros: -5/2, 4/5, 6.
The factors are

---------------------------------------

--------------------------------------

--------------------------------------

<u>Finally for the question c we have</u>
Degree: 5
Zeros: -3, 1, 4, -1
Multiplicity 2 in -1

--------------------------------------

--------------------------------------

----------------------------------------

-----------------------------------------
