Answer:
Both facilitated diffusion and active transport are selective processes. Only selective molecules are allowed to cross the membrane. They utilize carrier proteins to move across the membrane.
Explanation:
Diffusion is the process by which molecules move across a membrane respective of the concentration gradient. The plasma membrane is a <em>selectively permeable membrane</em> which allows specific molecules to move across the concentration gradient.
Molecules migrate from a region of higher concentration to a lower concentration in case of diffusion. It can be classified into simple diffusion and facilitated diffusion. These are examples of <em>passive transport</em>.
In facilitated diffusion molecules move across the concentration gradient with the help of <em>carrier proteins or channel proteins</em>. The carrier proteins bind to the molecule which has to be transported and change conformation to allow it to cross the membrane. For example glucose molecule is carried across through <em>GLUT transporter</em>. <em>Channel proteins</em> open a channel inside the membrane and molecules get transported across the gradient.
Active transport carries molecules against the concentration gradient with the assist of energy. ATP hydrolysis is utilized to generate energy. As a result of active transport, the molecules are aggregated on one side of the membrane.
Hey there!
We need to find a common denominator.
5*3= 15
4/5= 12/15
2/3= 10/15
12+10=22
22/15
or
1 7/15
I hope this helps!
~kaikers
Answer:
The immune system protects the host from pathogenic organisms (bacteria, viruses, fungi, parasites). To deal with this array of threats, the immune system has evolved to include a myriad of specialised cell types, communicating molecules and functional responses.
Explanation:
He was looking through a microscope at particles trapped in cavities inside pollen grains in water. The concept of Brownian motion is named after him. This is the random motion of particles suspended in a fluid, liquid or gas resulting from their collision with the fast-moving molecules. Here, the patterns of motion of the particles are typically alternations between random fluctuations in a particle's position inside a fluid sub-domain with a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.
Both will contain the sugar ribose and the base uracil