Y=2/x. this equation has degree -1 whereas linear functions have degree 1
y=6x²-7 is nonlinear as it is degree 2
Answer:
![\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7D%20%5Cbigg%29e%5E%5Cbig%7B-x%7D)
General Formulas and Concepts:
<u>Algebra I</u>
Terms/Coefficients
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle f(x) = \frac{\sqrt{x}}{e^x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%28x%29%20%3D%20%5Cfrac%7B%5Csqrt%7Bx%7D%7D%7Be%5Ex%7D)
<u>Step 2: Differentiate</u>
- Derivative Rule [Quotient Rule]:
![\displaystyle f'(x) = \frac{(\sqrt{x})'e^x - \sqrt{x}(e^x)'}{(e^x)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B%28%5Csqrt%7Bx%7D%29%27e%5Ex%20-%20%5Csqrt%7Bx%7D%28e%5Ex%29%27%7D%7B%28e%5Ex%29%5E2%7D)
- Basic Power Rule:
![\displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}(e^x)'}{(e^x)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B%5Cfrac%7Be%5Ex%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7D%28e%5Ex%29%27%7D%7B%28e%5Ex%29%5E2%7D)
- Exponential Differentiation:
![\displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{(e^x)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B%5Cfrac%7Be%5Ex%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7De%5Ex%7D%7B%28e%5Ex%29%5E2%7D)
- Simplify:
![\displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{e^{2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7B%5Cfrac%7Be%5Ex%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7De%5Ex%7D%7Be%5E%7B2x%7D%7D)
- Rewrite:
![\displaystyle f'(x) = \bigg( \frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x \bigg) e^{-2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cbigg%28%20%5Cfrac%7Be%5Ex%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7De%5Ex%20%5Cbigg%29%20e%5E%7B-2x%7D)
- Factor:
![\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20-%20%5Csqrt%7Bx%7D%20%5Cbigg%29e%5E%5Cbig%7B-x%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
The value of x will be 2.5
LY will be 9 while KH will be 7.5
Step-by-step explanation:
Hope This Helped
Answer:
The correct answer is option C.
The mid point of the line segment.
Step-by-step explanation:
the perpendicular line segment construction twice using paper folding
we have to find the mid point of the given line segment.
We get the midpoint easily when fold the paper correctly
Therefore the correct answer is option C.
The mid point of the line segment.