102% as a fraction would be 102/100, because a percent is by the one hundreds, and you can have a fraction be by hundreds. You can reduce the fraction by dividing it by 2, which equals 51/50. Another example, to clarify, is to make 41% a fraction, and decimal. Once again a percent is base 100, so the fraction would be 41/100, then to make it a decimal, you would put a decimal point in front of the 41, to make it .41. Hope I helped, and if you don't understand, tell me and I will try to make it better.

Solve the following using Substitution method
2x – 5y = -13
3x + 4y = 15


- To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.

- Choose one of the equations and solve it for x by isolating x on the left-hand side of the equal sign. I'm choosing the 1st equation for now.

- Add 5y to both sides of the equation.


- Multiply
times 5y - 13.

- Substitute
for x in the other equation, 3x + 4y = 15.

- Multiply 3 times
.

- Add
to 4y.

- Add
to both sides of the equation.

- Divide both sides of the equation by 23/2, which is the same as multiplying both sides by the reciprocal of the fraction.

- Substitute 3 for y in
. Because the resulting equation contains only one variable, you can solve for x directly.


- Add
to
by finding a common denominator and adding the numerators. Then reduce the fraction to its lowest terms if possible.

- The system is now solved. The value of x & y will be 1 & 3 respectively.

The answer is either c of d but if I had to pick one I would say C.
Answer:
13,92838827718412ft
Step-by-step explanation:
a² + b² = c²
a = 13ft
b = 5ft
169 + 25 = 194
c = √194
c = 13,92838827718412ft
Answer:
Step-by-step explanation:
Hello!
The definition of the Central Limi Theorem states that:
Be a population with probability function f(X;μ,δ²) from which a random sample of size n is selected. Then the distribution of the sample mean tends to the normal distribution with mean μ and variance δ²/n when the sample size tends to infinity.
As a rule, a sample of size greater than or equal to 30 is considered sufficient to apply the theorem and use the approximation.
X[bar]≈N(μ;σ²/n)
If the variable of interest is X: the number of accidents per week at a hazardous intersection.
There is no information about the distribution of this variable, but a sample of n= 52 weeks was taken, and since the sample is large enough you can approximate the distribution of the sample mean to normal. With population mean μ= 2.2 and standard deviation σ/√n= 1.1/√52= 0.15
I hope it helps!