Out of the options, the best indicator is a color change since it is the only one that can't really be blamed on a physical change. you will eventually notice that during qualitative labs and some quantitative labs, usually the thing that you are looking for is either color change or the production of a precipitate to indicate the presence of a chemical reaction
<span>The products of the light-dependent reactions are used to help 'fuel' the light-independent reactions.
</span><span>Example:
NADPH and ATP are produced during the light-dependent reaction for use in the light-independent reaction (the Calvin Cycle). </span>
Answer:
copper
Explanation:
so for this you can work out the mass for both and compare
so mass = moles × mr
so mass of sodium = 1 × 23= 23 g
and mass of copper = 1 × 63.5= 63.5 g
so copper have more mass :)
Answer:
I got 3/8, hope this helps.
Explanation:
Answer:
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year
Explanation:
Given that the mass of the carbon 14 at the start = 5 gram
At the end of 5,000 years we will have;

Where
A = The amount of carbon 14 left
A₀ = The starting amount of carbon 14
e = Constant = 2.71828
= The half life

t = The time elapsed = 5000 years
λ = 0.693/
= 0.693/5730 = 0.0001209424
Therefore;
A = 5 × e^(-0.0001209424×5000) = 2.7312 grams
Therefore, the amount of carbon 14 decayed in the 5000 years is the difference in mass between the starting amount and the amount left
The amount of carbon 14 decayed = 5 - 2.7312 = 2.2688 grams
The average yearly rate of change of carbon-14 during the first 5000 years is therefore;
2.2688 grams/(5000 years) = 0.0004538 grams per year
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year.