The area of a <span>isosceles triangle:
S=(bh)/2, where b is for base (=4) and h is for height (=x+3)
We get the equation:
10=(4*(x+3))/2
10=(4x+12)/2
4x+12=20
4x=8
x=2
</span>
Answer:
(3x+1)(x+3) is the factorised form for the expression.
Step-by-step explanation:
:3
x
2
+
10
x
+
3
We can Split the Middle Term of this expression to factorise it.
In this technique, if we have to factorise an expression like
a
x
2
+
b
x
+
c
, we need to think of 2 numbers such that:
N
1
⋅
N
2
=
a
⋅
c
=
3
⋅
3
=
9
and,
N
1
+
N
2
=
b
=
10
After trying out a few numbers we get:
N
1
=
9
and
N
2
=
1
9
⋅
1
=
9
, and
9
+
(
1
)
=
10
3
x
2
+
10
x
+
3
=
3
x
2
+
9
x
+
1
x
+
3
=
3
x
(
x
+
3
)
+
1
(
x
+
3
)
(
3
x
+
1
)
(
x
+
3
)
is the factorised form for the expression.
is the factorised form for the expression.
9514 1404 393
Answer:
x = 4
Step-by-step explanation:
Corresponding segments of similar triangles are proportional. Here, the similar triangles are ...
ΔABC ~ ΔADE
so the relationship between the sides is ...
BC/BA = DE/DA . . . . . . we put the unknown value in the numerator
x/4 = 12/(4+8)
x = 4(1) = 4
The length of side x is 4.
Same as before
total=(2w+75)(2w+35)=4w²+220w+2625
pool=75 times 35=2625
minus pool from total
4w²+220w+2625-2625=4w²+220w