Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)
Answer:
a is 3,2 b is 1,-2 and c is -2,1
Step-by-step explanation:
u take the first number then you just put em together
B
Equivalent fractions are made when you multiply both the top (numerator) and the bottom (denominator) of the fraction by the same number. The only choice that is correct here is B.
Answer:
21
Step-by-step explanation:
bc
1
12
9
+--
21