Answer:
Enzyme-controlled chemical reactions combining carbon dioxide and glucose water. The photosynthetic rate is affected by the temperature much like any other enzyme-controlled reaction.
Explanation:
At low temperatures, the number of molecular collisions between enzymes and substrates limits the photosynthetic rate. Enzymes are denatured at high temperatures.
Enzymes are protein molecules used in biological reactions by living organisms. The proteins are folded in a very specific form, which enables them to effectively bind to the molecules of interest. The enzymes used for photosynthesis perform less efficiently at a low temperature between 32 and 50 degrees Fahrenheit 0, 10, and 10 degrees Celsius, which lowers the photosynthesis rate.This will lead to lower glucose synthesis and slow growth. In the case of plants in a greenhouse, this is prevented by installing a greenhouse heater and thermostat.
In meiosis, cell division will occur two times. It shall be called Meiosis I and Meiosis II. And Meiosis happens to our sex cells, egg for female and sperm cells for the male. There four stages in Meiosis I, Prophase I will happen when who homologous chromosomes exchange DNA. Metaphase I will happen when the pair move together in the center. Anaphase I is when the who homologous chromosomes are pulled apart to opposite poles. Telophase I is when the the first division of the chromosomes happen. Producing two 24 chromosomes cells. The nest division will produce haploid or 12 chromosome cells. In Propase II, the nuclear walls will disappear once again, in the Metaphase II the cells will meet again in the center. In Anaphase II the chromatids will be pulled apart. And then lastly in the Telophase II, the chromatids will not be 2 haploids. So in Meiosis, 4 sex cells are produced.
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from reversible process in thermodynamics.
Weak acids and bases undertake reversible reactions. For example, carbonic acid: H2CO3 (l) + H2O(l) ⇌ HCO−3 (aq) + H3O+(aq).
The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction.[2] So, when the free energy change is large (more than about 30 kJ mol−1), then the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although in reality small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction
Answer:
A it investigates the super natural.