Well I dont know exactly how you modeled your model in this activity (also, I notice this is a question from 2016), but I do know the two processes.
This is the process of making glucose in plants. Photosynthesis goes through two individual stages:
Stage 1: L<span>ight dependent reaction</span> (depends on the presence of light; it can’t happen in the dark)
Stage 2: Light independent (dark reaction) (works in the absence of light, but calling it a dark reaction might be misleading; It can just as well happen in the presence of light).
Organize the lengths below from shortest to longest.
28 dm ,629,000 mm ,1.2 km, 30,277 cm
To answer this, all values should be converted in the same
unit just like in km
28 dm = 0.0028 km
629,000 mm = 0.629 km
1.2 km
30,277 cm = 0.30277 km
So the order is 28 dm, 30,277 cm , 629,000 mm and 1.2 km
Answer:
Explanation:
A chameleon will eat whatever it can fit in its mouth and then some. I'm sure they eat frogs in the wild, I don't think they know the difference between a frog or an insect just a food idem to them.
Answer:
- Glycine
- Ribulose 1,5-bisphosphate
- 3-phosphoglycerate
- Glyceraldehyde 3-phosphate.
- Glucose
- Sucrose
Explanation:
The glycine, among other amino acids, helps to improve chlorophyll production and promotes the process of photosynthesis.
<u>Calvin cycle</u>
During the carbon fixation phase, a CO² molecule combinate with a ribulose 1,5-bisphosphate to form 6-carbonated molecules, which will divide into two 3-phosphoglycerate molecules.
During the reduction phase, NADPH donates its electrons to reduce 3-phosphoglycerate molecules, and turn them into glyceraldehyde 3-phosphate.
During the regeneration phase, a glyceraldehyde 3-phosphate molecule leaves the cycle and goes to the cytosol to form glucose. This step can be done when three CO² enter the cycle and produce six glyceraldehyde 3-phosphate molecules. One of them leaves the cycle to form glucose, while the other five are recycled.
<u>Cytosol: </u>
Once in the cytosol, glyceraldehyde 3-phosphate molecules are used to form glucose and fructose. These two molecules are the monosaccharides that form the sucrose.
Once sucrose is formed, it is transported from the photosynthetic tissues to different parts of the plant by the phloem.