1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
14

If you buy a can of pineapple chunks for $2.00 then how many can you buy with $10.00

Mathematics
2 answers:
Hitman42 [59]3 years ago
7 0
With $10.00, you would be able to buy 5 cans.
Gnoma [55]3 years ago
4 0
You can buy 5 cans of pineapple chunks
You might be interested in
Solve the simultaneous equations<br> y = 9 - X<br> y = 2x2 + 4x + 6
kenny6666 [7]

Answer:

\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=9-x,\:y=2x^2+4x+6\mathrm{\:are\:}

\begin{pmatrix}x=\frac{1}{2},\:&y=\frac{17}{2}\\ x=-3,\:&y=12\end{pmatrix}

Step-by-step explanation:

Given the simultaneous equations

y=9-x

y\:=\:2x^2\:+\:4x\:+\:6

Subtract the equations

y=9-x

-

\underline{y=2x^2+4x+6}

y-y=9-x-\left(2x^2+4x+6\right)

\mathrm{Refine}

x\left(2x+5\right)=3

\mathrm{Solve\:}\:x\left(2x+5\right)=3

2x^2+5x=3        ∵ \mathrm{Expand\:}x\left(2x+5\right):\quad 2x^2+5x

\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}

2x^2+5x-3=3-3

\mathrm{Solve\:with\:the\:quadratic\:formula}

\mathrm{Quadratic\:Equation\:Formula:}

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=2,\:b=5,\:c=-3:\quad x_{1,\:2}=\frac{-5\pm \sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}v\\

x=\frac{-5+\sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}

  =\frac{-5+\sqrt{5^2+4\cdot \:2\cdot \:3}}{2\cdot \:2}

  =\frac{-5+\sqrt{49}}{2\cdot \:2}

  =\frac{-5+\sqrt{49}}{4}

  =\frac{-5+7}{4}

  =\frac{2}{4}

  =\frac{1}{2}

Similarly,

x=\frac{-5-\sqrt{5^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}:\quad -3

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\frac{1}{2},\:x=-3

\mathrm{Plug\:the\:solutions\:}x=\frac{1}{2},\:x=-3\mathrm{\:into\:}y=9-x

\mathrm{For\:}y=9-x\mathrm{,\:subsitute\:}x\mathrm{\:with\:}\frac{1}{2}:\quad y=\frac{17}{2}

\mathrm{For\:}y=9-x\mathrm{,\:subsitute\:}x\mathrm{\:with\:}-3:\quad y=12

\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=9-x,\:y=2x^2+4x+6\mathrm{\:are\:}

\begin{pmatrix}x=\frac{1}{2},\:&y=\frac{17}{2}\\ x=-3,\:&y=12\end{pmatrix}

3 0
3 years ago
I need the answer now please
xxMikexx [17]

Answer:

180/147

Step-by-step explanation:

We need to find the additive inverse of the given numbers.

  • For finding it we may simply out -1 as multiplication in front of the terms .

<u>SOLUTION</u><u> </u><u>1</u><u> </u><u>:</u><u>-</u>

→ 3/-7 - 11/21

→ -3/7 -11/21

→ 3×-3 - 11 /21

→ -9-11/21

→ -20/21

<u>SOLUTION</u><u> </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u>

→ 9/5 ÷ 7/5

→ 9/5 × 5/7

→ 9/7

→ Product of nos . = -20/21 × -9/7

→ Ans = 180/147

7 0
3 years ago
Find an equation in standard form for the ellipse that satisfies the given conditions. Major axis length 10 on y-axis minor axis
Helen [10]
The answe might be e= 10\16
3 0
3 years ago
Please please please help me!! I'll give 5 stars and thanks!
ipn [44]
F(1) = -2

hope it helps

---------------------------------
4 0
3 years ago
What is the value of y in the sequence below?<br> 2,y,18, -54,162,
snow_lady [41]

First, let's check if the sequence is geometric or arithmetric.

If arithmetric, the sequence will have common difference.

<u>A</u><u>r</u><u>i</u><u>t</u><u>h</u><u>m</u><u>e</u><u>t</u><u>r</u><u>i</u><u>c</u>

\displaystyle \large{a_{n + 1} - a_n = d}

d stands for a common difference. Common Difference means that sequences must have same difference after subtracting.

<u>G</u><u>e</u><u>o</u><u>m</u><u>e</u><u>t</u><u>r</u><u>i</u><u>c</u>

\displaystyle \large{ \frac{a_{n + 1}}{a_n}  = r}

r stands for a common ratio.

To find the value of y, you can check the sequence. If we try subtracting the sequences, the differences are different. That means the sequences are not arithmetric. That only leaves the geometric sequence.

Let's check by dividing sequences.

We have:

  • 2,y,18,-54,162,...

Let's check by divide -54 by 18 and 162 by -54. We need to divide more than one so we can prove that the sequence is geometric.

\displaystyle \large{ \frac{ - 54}{18}  = - 3 } \\  \displaystyle \large{ \frac{ 162}{ - 54}  = - 3}

Hence, the sequence is geometric.

Because the common ratio is -3. Let these be the following:

\displaystyle \large{ a_{n + 1} = y } \\  \displaystyle \large{ a_n = 2 } \\  \displaystyle \large{ r =  - 3 }

From the:

\displaystyle \large{ \frac{a_{n + 1}}{a_n}  = r}

Substitute the values in.

\displaystyle \large{ \frac{y}{2}  =  - 3}

Multiply the whole equation by 2 to isolate y.

\displaystyle \large{ \frac{y}{2} \times 2  =  - 3 \times 2} \\  \displaystyle \large{ y =  - 6}

Therefore, the value of y is -6.

7 0
2 years ago
Other questions:
  • On Monday Sarah had homework in 7⁄10 of her classes, Tuesday 3⁄5 , Wednesday 9⁄11 , and Thursday 1⁄2 . Which day did she have th
    10·1 answer
  • Please help, what is the measurement of YZ?
    11·2 answers
  • What is 14% of 39? (help)
    8·2 answers
  • What is the area of the figure James drew
    12·1 answer
  • Evalute 20/6 - 2/3 pleASES i need help with this answer
    10·2 answers
  • The number of visitors to an annual neighborhood carnival increased each year as shown in the table. Predict the number of visit
    6·1 answer
  • Isabella is deciding between two parking garages. Garage A charges an initial fee of
    9·1 answer
  • Solve the above attached question<br><br><br>Thanks​
    14·1 answer
  • The sum of 3 and c is less than or equal to -23.
    15·1 answer
  • Anser rigt know plesew
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!