Answer:
78 : 162 = 13 : 27. These two equalities are examples of proportions (equal ratios); it is as simple as that.
Answer:
Step-by-step explanation:
0 = (x + 1)(x + 1)
Therefore
x + 1 = 0
x = -1 (twice)
(-1, 0), (-1, 0)
It appears as if 12cm is half the length of the side so we can assume that the total length of one side is 24cm.
The area of a square is given by the equation
where s is the length of the side.

A=576
The area of this square is 576cm2.
Hope this helps!
I'll leave the computation via R to you. The
are distributed uniformly on the intervals
, so that

each with mean/expectation
![E[W_i]=\displaystyle\int_{-\infty}^\infty wf_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac w{10i}\,\mathrm dw=5i](https://tex.z-dn.net/?f=E%5BW_i%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20wf_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%20w%7B10i%7D%5C%2C%5Cmathrm%20dw%3D5i)
and variance
![\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3DE%5B%28W_i-E%5BW_i%5D%29%5E2%5D%3DE%5B%7BW_i%7D%5E2%5D-E%5BW_i%5D%5E2)
We have
![E[{W_i}^2]=\displaystyle\int_{-\infty}^\infty w^2f_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac{w^2}{10i}\,\mathrm dw=\frac{100i^2}3](https://tex.z-dn.net/?f=E%5B%7BW_i%7D%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20w%5E2f_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%7Bw%5E2%7D%7B10i%7D%5C%2C%5Cmathrm%20dw%3D%5Cfrac%7B100i%5E2%7D3)
so that
![\mathrm{Var}[W_i]=\dfrac{25i^2}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3D%5Cdfrac%7B25i%5E2%7D3)
Now,
![E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30](https://tex.z-dn.net/?f=E%5BW_1%2BW_2%2BW_3%5D%3DE%5BW_1%5D%2BE%5BW_2%5D%2BE%5BW_3%5D%3D5%2B10%2B15%3D30)
and
![\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5Cleft%5B%5Cbig%28%28W_1%2BW_2%2BW_3%29-E%5BW_1%2BW_2%2BW_3%5D%5Cbig%29%5E2%5Cright%5D)
![\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5B%28W_1%2BW_2%2BW_3%29%5E2%5D-E%5BW_1%2BW_2%2BW_3%5D%5E2)
We have

![E[(W_1+W_2+W_3)^2]](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D)
![=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])](https://tex.z-dn.net/?f=%3DE%5B%7BW_1%7D%5E2%5D%2BE%5B%7BW_2%7D%5E2%5D%2BE%5B%7BW_3%7D%5E2%5D%2B2%28E%5BW_1%5DE%5BW_2%5D%2BE%5BW_1%5DE%5BW_3%5D%2BE%5BW_2%5DE%5BW_3%5D%29)
because
and
are independent when
, and so
![E[(W_1+W_2+W_3)^2]=\dfrac{100}3+\dfrac{400}3+300+2(50+75+150)=\dfrac{3050}3](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D%3D%5Cdfrac%7B100%7D3%2B%5Cdfrac%7B400%7D3%2B300%2B2%2850%2B75%2B150%29%3D%5Cdfrac%7B3050%7D3)
giving a variance of
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{3050}3-30^2=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B3050%7D3-30%5E2%3D%5Cdfrac%7B350%7D3)
and so the standard deviation is 
# # #
A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute
![\mathrm{Var}[W_1+W_2+W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D)
![=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])](https://tex.z-dn.net/?f=%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D%2B2%28%5Cmathrm%7BCov%7D%5BW_1%2CW_2%5D%2B%5Cmathrm%7BCov%7D%5BW_1%2CW_3%5D%2B%5Cmathrm%7BCov%7D%5BW_2%2CW_3%5D%29)
and since the
are independent, each covariance is 0. Then
![\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D)
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{25}3+\dfrac{100}3+75=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B25%7D3%2B%5Cdfrac%7B100%7D3%2B75%3D%5Cdfrac%7B350%7D3)
and take the square root to get the standard deviation.
Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits