Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Given that the rope is not moving (acceleration is zero), by the second Law of Newton (F=m*a), the net force acting on the rope is zero.
Then, the force applied by the team B equals the force applied by the tema A: 103 N.
Answer:
Wind is the primary renewable resource used for electric power generation in the state. In 2019, wind provided 97% of the state's renewable energy generation, and Illinois was sixth in the nation in utility-scale (1 megawatt or greater) wind capacity, with about 5,200 megawatts online.
Explanation:
Answer:
Interference of light
Diffraction of light
Polarization of light
Reflection of light
all show the wave nature of light.
False, Carbon usually forms four covalent bonds.