Answer:

Explanation:
Close to Earth's surface, the force of gravity that pulls an object towards the ground is
(2)
where
m is the mass of the object
g is the acceleration due to gravity, which is
close to Earth's surface
This is an approximation of the general formula of gravity valid only close to Earth's surface. The more general formula is
(1)
where
G is the gravitational constant
M is the Earth's mass
m is the object's mass
r is the distance of the object from Earth's center
At the Earth's surface,
r = R (Earth's radius), and by calling the following factor

we see that eq.(1) becomes eq.(2).
Answer: D. decreasing the temperature
Explanation:
Answer:
cross out the false piece in blue and write the true piece in red
Answer:
option C
Explanation:
given,
mass of the three planet is same
radius of the planets are
R₁ > R₂ > R₃
expression of escape velocity

G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
from the above expression we can clearly conclude that the escape velocity is inversely proportional to the radius of the Planet.
radius of planet increases escape velocity decreases.
Hence planet 3 has the smallest radius so the escape velocity of the third planet will be maximum.
The correct answer is option C
Answer:
Approximately
.
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (
) is equal to
.
There are two half-reactions in this question.
and
. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of
should be positive.
In this case,
is positive only if
is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to
.
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
is the number moles of electrons transferred for each mole of the reaction. In this case the value of
is
as in the half-reactions.
is Faraday's Constant (approximately
.)
.