Water must absorb energy in order to melt, evaporate, or get warmer.
Water and wind cause mechanical weathering and produce angular rocks, sheer canyon walls, and pebble-covered surfaces.
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
Answer:

Explanation:
assume
M= mass of Mars
m=mass of phobos
r=orbital radius
T=period
we can apply F=ma to this orbital motion (considering the cricular motion laws)
where,
and a=rω^2
where ω=
and G is the universal gravitational constant.
G = 6.67 x 10-11 N m2 / kg2

The strength of the electric field on the point charge at this distance will be 4000 V/m.
<h3>What is the strength of the electric field?</h3>
The strength of the electric field is the ratio of electric force per unit charge.
The given data in the problem is;
Qis the unit charge = 4.0 × 10⁻⁶ C
E is the strength of the electric field
R is the distance from point charge = 3 m
The strength of the electric field is;

Hence, the strength of the electric field on the point charge at this distance will be 4000 V/m.
To learn more about the strength of the electric field refer to the link;
brainly.com/question/15170044
#SPJ1