Answer:

Explanation:
From the exercise we know the cannonball's <u>initial velocity</u>, the <u>angle</u> which its released with respect to the horizontal and its <u>initial height</u>

If we want to know whats the <u>y-component of velocity</u> we need to use the following formula:

Knowing that 

So, the cannonball's y-component of velocity is 
It depends on what speed you are going at. Assuming you are in our fastest spacecraft as of now which has a speed of 17,500 mph
1 light second = 186,282 mph
There are <span>31,536,000 in one year so 17,500x=31,534,000 and your answer would be in years. It would take you roughly 1802 years.</span>
(Sorry about mph I'm American.)
Answer:
Answer is option b) 2.97m
Explanation:
With the relationship between the force exerted by the runner and the mass that it has, I can determine the acceleration it will have:
F= m × a ⇒ a= (650 kg ×(m/s^2)) / (70kg)= 9.286 (m/s^2)
With the acceleration that prints the force exerted and the time I can determine the distance traveled in the interval:
Distance= (1/2) × a × t^2 = (1/2) × 9.286 (m/s^2) × ((0.8s)^2)= 2.97m
Answer:
318.5 x 10^4 Pa
Explanation:
weight of woman = m g = 65 x 9.8 = 637 N
Area of both the heels = 1 x 2 = 2 cm^2 = 2 x 10^-4 m^2
Pressure is defined as the thrust acting per unit area.
P = F / A
Where, F is the weight of the woman and A be the area of heels
P = 637 / (2 x 10^-4) = 318.5 x 10^4 Pa