Answer:
The acceleration is 
Explanation:
Given the velocity function:

you can obtain the instantaneous acceleration "a" as its first derivative:

To determine the value of "a" when the velocity was 12m/s, you need to figure out the value for "t" when this happens. At what time t is the velocity 12m/s?

This value of t is less than the 5 seconds mentioned in the text - so that is a good sign that the formula is valid for this value. And so you can use t=3.47s in the derivative (acceleration) above:
Gravitational force is given as

so here gravitational force will be given by above formula where the force between two objects depends on the mass of two objects and distance between them.
Now here since the tool is at finite distance from Astronaut and Moon, Sun, Earth
So all the above will exert gravitational force on the tool but the magnitude of force will be different as all of the above are of different masses and situated at different distance.
So all options are correct here
The Astronaut
The Moon
The Sun
The Earth
Answer:
1.it also hleps us to became doctors becuase without physics you can't be a doctor
2.physics needs to be steady whether you like it or not it helps you in life so everybody must study physics no matter is in Uganda USA and plenty more countries there must be physics to dare to be studied
Answer:
0.00225 N/m
Explanation:
Parameters given:
Current in first wire, I(1) = 15A
Current in second wire, I(2) = 15A
Distance between two wires, R = 1cm = 0.01m
The force per unit length between two current carrying wires is:
F/L = μ₀I(1)I(2)/2πR
μ₀ = 4π * 10^(-7) Tm/A
F/L = [4π * 10^(-7) * 15 * 15] / (2π * 0.01)
F/L = 2.25 * 10^(-3) N/m or 0.00225 * 10^(-3) N/m
Answer:
<em>Most potential energy: A</em>
<em>Most kinetic energy: D</em>
Explanation:
Kinetic Energy is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The gravitational potential energy is the energy stored in an object because of its height h in a gravitational field.
It can be calculated with the equation:
U=m.g.h
The point where the object has the most potential energy is that where it has more height. It corresponds to point A.
When the object is at zero height, all of its potential energy was transformed to kinetic, thus the point where the kinetic energy is D.
Most potential energy: A
Most kinetic energy: D