Answer:
70/5985
Step-by-step explanation:
We know that a quadrilateral needs to have four vertices (or points on the circle). There are always two ways to link the cross — horizontally or vertically. Using my limited knowledge of combinations, we know that choosing four points out of seven equals 35. Multiplying the two ways to connect those lines (again, horizontally and vertically) makes 35*2 = 70 "bow-tie quadrilaterals" that can be formed on the circle using four points. There are 5985 ways four chords can be chosen out of twenty-five chords because C(25,4) equals 5985, so the probability is 70/5985... and then we just need to simplify that fraction.
Answer: Choice D
b greater-than 3 and StartFraction 2 over 15 EndFraction
In other words,
b > 3 & 2/15
or

========================================================
Explanation:
Let's convert the mixed number 2 & 3/5 into an improper fraction.
We'll use the rule
a & b/c = (a*c + b)/c
In this case, a = 2, b = 3, c = 5
So,
a & b/c = (a*c + b)/c
2 & 3/5 = (2*5 + 3)/5
2 & 3/5 = (10 + 3)/5
2 & 3/5 = 13/5
The inequality
is the same as 
---------------------
Let's multiply both sides by 15 to clear out the fractions

---------------------
Now isolate the variable b

Side note: Another way to go from 47/15 to 3 & 2/15 is to notice how
47/15 = 3 remainder 2
The 3 is the whole part while 2 helps form the fractional part. The denominator stays at 15 the whole time.
Answer:
3/17
Step-by-step explanation:
3/4 divided by 4 1/4 is = to 3/4 divided by 17/4= 3/4 times 4/17 = 3/17
Answer:
6
Step-by-step explanation:
8(1/2) + 2(4)
/2
4 + 8
/2
12/2
6
Answer:
-38
Step-by-step explanation:
1. Isolate y to one side.
y+12=-26
subtract 12 to both sides
y=-38