Answer:
Explanation:
The switch from glutamic acid to valine in position 6 of hemoglobin (HB) forms the basis of sickle cell anemia disease pathology.
Valine is hydrophobic and it's chain is shorter than glutamic acid. The lack of the carboxylic acid and shortness of valine will result in loss of the ionic interactions formed between the glutamic acid's carboxylic group and other amino acids. A hydrophobic cavity will form in the beta sheet of HB due to the short and hydrophobic structure of valine. For these reasons, the HB molecule will be less stable and insoluble in water. The insolubility is thought to be caused by fibril formation between the valine interacting with hydrophobic pocket residues of the adjacent HB molecule. This would in turn affect binding of oxygen to HB.
The difference in concentration between solutions on either side of a cell membrane is a concentration gradient.
In the field of biology, a concentration gradient can be described as a difference in the concentration of molecules inside and outside of a cell. It is due to concentration gradient that molecules move into and out of a cell through the cell membrane.
Some molecules move from an area of higher concentration gradient to an area of lower concentration along the concentration gradient. Diffusion is an example of such a process.
On the other hand, some molecules move from an area of lower concentration to an area of higher concentration against the concentration gradient. Active transport is an example of such a process.
To learn more about concentration gradient, click here:
brainly.com/question/13814995
#SPJ4
Answer:
The answer is C multicellular, eukaryotic, heterotrophic
Answer:
The answer is Surface tension
B is the most efficient answer