Answer:
![\huge\boxed{\sqrt[3]{c^4}=c^\frac{4}{3}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\text{therefore}\\\\\sqrt[3]{c^4}=c^\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Ctext%7Btherefore%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D)
Answer:

Step-by-step explanation:
For a shape to be a parallelogram, the angles that are across from one another have to be equal.
We can now find x by making both equations equal to each other and solving.

Solve.

6/74 i think. So #banananutmuffin/#muffinsintotal
Step-by-step explanation:
Let's say R is the initial radius of the sphere, and r is the radius at time t.
The volume of the sphere at time t is:
V = 4/3 π r³
Taking derivative with respect to radius:
dV/dr = 4π r²
This is a maximum when r is a maximum, which is when r = R.
(dV/dr)max = 4π R²
This is 4 times the sphere's initial great circle area, but not the great circle circumference. The problem statement contains an error.