Answer:
See Explanation
Step-by-step explanation:
![log(x + y) = log3 + \frac{1}{2} logx+ \frac{1}{2} logy \\ \\ log(x + y) = log3 + logx ^{\frac{1}{2}} + logy ^{\frac{1}{2}}\\ \\ log(x + y) = log3 + log(xy) ^{\frac{1}{2}} \\ \\ log(x + y) = log[3(xy) ^{\frac{1}{2}}] \\ \\ x + y = 3(xy) ^{\frac{1}{2}} \\ \\ squaring \: both \: sides \\ {(x + y)}^{2} = \bigg(3(xy) ^{\frac{1}{2}} \bigg)^{2} \\ \\ {x}^{2} + {y}^{2} + 2xy = 9xy \\ \\ {x}^{2} + {y}^{2} = 9xy - 2xy \\ \\ \purple{ \bold{{x}^{2} + {y}^{2} = 7xy}} \\ thus \: proved](https://tex.z-dn.net/?f=log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logx%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logy%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20logx%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%2B%20%20%20logy%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%20%20%5C%5C%20%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20log%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20%20log%5B3%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5C%5C%20%20%5C%5C%20x%20%2B%20y%20%3D%203%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20squaring%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%7B%28x%20%2B%20y%29%7D%5E%7B2%7D%20%20%3D%20%20%5Cbigg%283%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cbigg%29%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%202xy%20%3D%209xy%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%209xy%20-%202xy%20%5C%5C%20%20%5C%5C%20%20%20%5Cpurple%7B%20%5Cbold%7B%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%207xy%7D%7D%20%5C%5C%20thus%20%5C%3A%20proved)
Answer:
x = 4, x ≠ -1
Step-by-step explanation:
√3x + 4 = x
(√3x + 4)² = x² (Square both sides to get rid of the radical.)
3x + 4 = x²
0 = x² - 3x - 4 (Set everything to 0 by moving everything to one side.)
0 = (x - 4)(x + 1) (Factor.)
x = 4 x = -1
Now we need to check for extraneous solutions:
√3(4) + 4 = 4
√12 + 4 = 4
√16 = 4
4 = 4
√3(-1) + 4 = -1
√-3 +4 = -1
√1 = -1
1 ≠ -1
-1 is an extraneous solution.
The quotient of the rational expressions is
.
<h3>Given that</h3>
Rational Expression;
÷
<h3>We have to determine</h3>
Which of the following is the quotient of the rational expressions shown here?
<h3>According to the question</h3>
Rational Expression;
÷
Then,
The quotient of the rational expressions is,
÷

Hence, The quotient of the rational expressions is
.
To know more about Division click the link given below.
brainly.com/question/26163188
Answer:
try this answer x2 + 2xy + y2 - 16