Answer:
1 kilometre =
100000 centimetres
( convert into cm )
formula = multiply the km value by 100000
( convert cm into km) = divide by 100000
The volume of a rectangular prism is (length) x (width) x (height).
The volume of the big one is (2.25) x (1.5) x (1.5) = <em>5.0625 cubic inches</em>.
The volume of the little one is (0.25)x(0.25)x(0.25)= 0.015625 cubic inch
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
5.0625 / 0.015625 = <em>324 tiny cubies</em>
=================================================
Doing it with fractions instead of decimals:
The volume of a rectangular prism is (length) x (width) x (height).
Dimensions of the big one are:
2-1/4 = 9/4
1-1/2 = 3/2
1-1/2 = 3/2
Volume = (9/4) x (3/2) x (3/2) =
(9 x 3 x 3) / (4 x 2 x 2) =
81 / 16 cubic inches.
As a mixed number: 81/16 = <em>5-1/16 cubic inches</em>
Volume of the tiny cubie = (1/4) x (1/4) x (1/4) = 1/64 cubic inch.
The number of little ones needed to fill the big one is
(Volume of the big one) divided by (volume of the little one) .
(81/16) divided by (1/64) =
(81/16) times (64/1) =
5,184/16 = <em>324 tiny cubies</em>.
Answer:
that no. is 20
Step-by-step explanation:
let us take that certain no. as x
so
2/5. x +2=10
2x/5 = 10-2
2x = 8×5
x= 40/2
x= 20
![\bf -7x-2y=4\implies -2y=7x+4\implies y=\cfrac{7x+4}{-2}\implies y=\cfrac{7x}{-2}+\cfrac{4}{-2} \\\\\\ y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{7}{2}} x-2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20-7x-2y%3D4%5Cimplies%20-2y%3D7x%2B4%5Cimplies%20y%3D%5Ccfrac%7B7x%2B4%7D%7B-2%7D%5Cimplies%20y%3D%5Ccfrac%7B7x%7D%7B-2%7D%2B%5Ccfrac%7B4%7D%7B-2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B7%7D%7B2%7D%7D%20x-2%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, what's the slope of a line parallel to that one above? well, parallel lines have exactly the same slope.