Answer:
To find the area of a composite figure, separate the figure into simpler shapes whose area can be found. Then add the areas together. Be sure than none of the simpler figures have overlapping areas. Example 1: Find the area of the composite shape shown below.
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
Answer:
![\large\boxed{-\bigg[(x-3)^2+2x\bigg]+1}\\\\\boxed{-x^2+4x-8}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%7D%5C%5C%5C%5C%5Cboxed%7B-x%5E2%2B4x-8%7D)
Step-by-step explanation:

![f(x)=(x-3)^2+2x\\\\g(x)=-x+1\\\\g\ \circ\ f\to\text{put f(x) instead of x in the function g(x)}:\\\\(g\ \circ\ f)(x)=-\bigg[\underbrace{(x-3)^2+2x}_{x}\bigg]+1](https://tex.z-dn.net/?f=f%28x%29%3D%28x-3%29%5E2%2B2x%5C%5C%5C%5Cg%28x%29%3D-x%2B1%5C%5C%5C%5Cg%5C%20%5Ccirc%5C%20f%5Cto%5Ctext%7Bput%20f%28x%29%20instead%20of%20x%20in%20the%20function%20g%28x%29%7D%3A%5C%5C%5C%5C%28g%5C%20%5Ccirc%5C%20f%29%28x%29%3D-%5Cbigg%5B%5Cunderbrace%7B%28x-3%29%5E2%2B2x%7D_%7Bx%7D%5Cbigg%5D%2B1)
-----------------------------------------
![-\bigg[(x-3)^2+2x\bigg]+1=-(x-3)^2-2x+1\\\\\text{use}\ (a-b)^2=a^2-2ab+b^2\\\\=-(x^2-(2)(x)(3)+3^2)-2x+1=-(x^2-6x+9)-2x+1\\\\=-x^2-(-6x)-9-2x+1=-x^2+6x-9-2x+1\\\\\text{combine like terms}\\\\=-x^2+(6x-2x)+(-9+1)=-x^2+4x-8](https://tex.z-dn.net/?f=-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%3D-%28x-3%29%5E2-2x%2B1%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5C%5C%5C%5C%3D-%28x%5E2-%282%29%28x%29%283%29%2B3%5E2%29-2x%2B1%3D-%28x%5E2-6x%2B9%29-2x%2B1%5C%5C%5C%5C%3D-x%5E2-%28-6x%29-9-2x%2B1%3D-x%5E2%2B6x-9-2x%2B1%5C%5C%5C%5C%5Ctext%7Bcombine%20like%20terms%7D%5C%5C%5C%5C%3D-x%5E2%2B%286x-2x%29%2B%28-9%2B1%29%3D-x%5E2%2B4x-8)
-----------------------------------


Answer:
8
Step-by-step explanation:
multiply 40 x 20 which =80
then put a point after the 8 then add a 0.
Your final answer should be 40% of $20 is $8.00
Answer:
x = 3/2 | y = -3
Step-by-step explanation:
Given equations:
- y = 2x - 6. . . .(i)
- y = -4x + 3. . . . (ii)
Substituting from equation (i) for y:
==> 2x - 6 = -4x + 3
==> 2x + 4x = 6 + 3
==> 6x = 9
<em>dividing both </em><em>sides by 3</em><em>:</em>
==> 2x = 3
==> x = 3/2
Substituting 3/2 for x in equation (i):
==> y = 2(3/2) - 6
==> y = 3 - 6
==> y = -3