Step-by-step explanation:
<em>The key to solve this problem is using ratios and proportions.</em>
<em>The key to solve this problem is using ratios and proportions.Ratio is the relationship between two numbers, defined as the quotient of one number for the other. So: The ratio between two numbers a and b is the fraction a/b and it is read a to b. This reason can also be written a : b.</em>
<em>The key to solve this problem is using ratios and proportions.Ratio is the relationship between two numbers, defined as the quotient of one number for the other. So: The ratio between two numbers a and b is the fraction a/b and it is read a to b. This reason can also be written a : b.Given two reasons a/b and c/d we say that they are in proportion if a/b = c/d. The terms a and d are called extremes while b and c are the means. In every proportion the product of the extremes is equal to the product of the means: a.d = b.c</em>
<em>The key to solve this problem is using ratios and proportions.Ratio is the relationship between two numbers, defined as the quotient of one number for the other. So: The ratio between two numbers a and b is the fraction a/b and it is read a to b. This reason can also be written a : b.Given two reasons a/b and c/d we say that they are in proportion if a/b = c/d. The terms a and d are called extremes while b and c are the means. In every proportion the product of the extremes is equal to the product of the means: a.d = b.cA student uses the ratio of 4 oranges to 6 fluid ounces of juice to find the numbers of oranges needed to make 24 fluid ounces of juice.</em>
<em>The key to solve this problem is using ratios and proportions.Ratio is the relationship between two numbers, defined as the quotient of one number for the other. So: The ratio between two numbers a and b is the fraction a/b and it is read a to b. This reason can also be written a : b.Given two reasons a/b and c/d we say that they are in proportion if a/b = c/d. The terms a and d are called extremes while b and c are the means. In every proportion the product of the extremes is equal to the product of the means: a.d = b.cA student uses the ratio of 4 oranges to 6 fluid ounces of juice to find the numbers of oranges needed to make 24 fluid ounces of juice. </em>
<em>The key to solve this problem is using ratios and proportions.Ratio is the relationship between two numbers, defined as the quotient of one number for the other. So: The ratio between two numbers a and b is the fraction a/b and it is read a to b. This reason can also be written a : b.Given two reasons a/b and c/d we say that they are in proportion if a/b = c/d. The terms a and d are called extremes while b and c are the means. In every proportion the product of the extremes is equal to the product of the means: a.d = b.cA student uses the ratio of 4 oranges to 6 fluid ounces of juice to find the numbers of oranges needed to make 24 fluid ounces of juice. The error in the student's work was that they reversed the reason, 24/16 instead of 16/24.</em>
Answer:
Bunny Hill Ski Resort:
y = 10x + 35
Diamond Ski Resort:
y = 5x + 40
Point where the cost is the same:
(1, 45)
Step-by-step explanation:
The question tells us that:
$35 and $40 are initial fees
$10 and $5 are hourly fees
This means that x and y will equal:
x = number of hours
y = total cost of ski rental after a number of hours
So we can form these 2 equations:
y = 10x + 35
y = 5x + 40
Now we are going to use System of Equations to find what point the cost of both ski slopes is the same.
Because they both equal y, we can set the equations equal to each other:
10x + 35 = 5x + 40
And we use basic algebra to solve for x:
10x + 35 = 5x + 40
(subtract 5x from both sides)
5x + 35 = 40
(subtract 35 from both sides)
5x = 5
(divide both sides by 5)
x = 1
Remember, x equals the number of hours.
That means when your rent out the skis for 1 hour, you will get the same price of $45 (you find the price by plugging in 1 into both of the equations)
Hope it helps (●'◡'●)
A, b, c, D let me know if this helps
Answer:
30-$ (4x$6.50) Hopefully this is correct
Step-by-step explanation: