Answer:
a)
b) 
c) 
d) 
Step-by-step explanation:
Let X the random variable that represent the number of material anomalies occurring in a particular region of an aircraft gas-turbine disk. We know that
The probability mass function for the random variable is given by:
And f(x)=0 for other case.
For this distribution the expected value is the same parameter
,
, 
a. Compute both P(X≤4) and P(X<4).
Using the pmf we can find the individual probabilities like this:




b. Compute P(4≤X≤ 8).







c. Compute P(8≤ X).


d. What is the probability that the number of anomalies exceeds its mean value by no more than one standard deviation?
The mean is 4 and the deviation is 2, so we want this probability





Answer:

Step-by-step explanation:
Using Pythagoras' identity in the right triangle
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides.
let h represent the hypotenuse, then
h² = 5² + (
)² = 25 + 2 = 27 ( take the square root of both sides )
h =
← exact value
Answer:
1 fact per 3 seconds because you divide 300 by 100
Answer:
x = 14
Step-by-step explanation:
From the given figuer...
Therefore, the value of x is 14.
<u>------------------------</u>
We have to find the expected value for the PlayBall lottery.
The price of the ticket = $1
Prize amount = $250
If a player wins, he will be winning $249 as the price is not paid back along with the prize amount. He is spending $1, getting back $250, so the net amount he is getting back is $249.
Now we have to find the probability of winning and losing.
Number of letters from A to T = 20
Number of digits from 0 to 9 = 10
Probability of picking up the same letter that was picked on that day = 1/20
Probability of picking up the same number that was picked on that day = 1/10
Thus, the Probability of picking up the same letter and same number that was picked on that day =

Thus, the probability of winning = 1/200
The probability of losing =

The expected value E for the PlayBall lottery will be:
Thus, the option C gives the correct answer